Literatur
- 1
Brunzell J D.
Clinical practice. Hypertriglyceridemia.
N Engl J Med.
2007;
357
1009-1017
- 2
Austin M A, Hokanson J E, Edwards K L.
Hypertriglyceridemia as a cardiovascular risk factor.
Am J Cardiol.
1998;
81
7B-12B
- 3
Miller M, Seidler A, Moalemi A, Pearson T A.
Normal triglyceride levels and coronary artery disease events: the Baltimore Coronary
Observational Long-Term Study.
J Am Coll Cardiol.
1998;
31
1252-1257
- 4
Jeppesen J, Hein H O, Suadicani P, Gyntelberg F.
Triglyceride concentration and ischemic heart disease: an eight-year follow-up in
the Copenhagen Male Study.
Circulation.
1999;
97
1029-1036
- 5
Hokanson J E, Austin M A.
Plasma triglyceride level is a risk factor for cardiovascular disease independent
of high-density lipoprotein cholesterol level: a meta-analysis of population-based
prospective studies.
J Cardiovasc Rsik.
1996;
3
213-219
- 6
Eberly L E, Stamler J, Neaton J D.
Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary
heart disease.
Arch Intern Med.
2003;
163
1077-1083
- 7
Bansal S, Buring J E, Rifai N, Mora S, Sacks F M, Ridker P M.
Fasting compared with nonfasting triglycerides and risk of coronary events in women.
JAMA.
2007;
298
309-316
- 8
Nordestgaard B G, Benn M, Schnohr P.
Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic
heart disease, and death in men and women.
JAMA.
2007;
298
299-308
- 9
Brunzell J D, Albers J J, Chait A. et al .
Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia.
J Lipid Res.
1983;
24
147-155
- 10
Hopkins P H, Heiss G, Ellison R C. et al .
Coronary artery disease in familial combined hyperlipidemia and familial hypertriglyceridemia:
a case-control comparison from the National Heart, Lung and Blood Institute Family
Heart Study.
Circulation.
2003;
108
519-523
- 11 Richter W O.
Chylomicronemia and chylomicronemia syndrome. In: Gotto AM, Mancini M, Richter WO, Schwandt P (Hrsg.) Treatment of Severe Dyslipoproteinemia
in the Prevention of Coronary Heart Disease. Basel; Karger 1992: 164-173
- 12
Smelt A H, de Beer F.
Apolipoprotein E and familial dysbetalipoproteinemia: clinical, biochemical, and genetic
aspects.
Semin Vasc Med.
2004;
4
249-257
- 13
Ayyobi A F, McGladdery S H, McNeely M J. et al .
Small, dense LDL and elevated apolipoprotein B are the common characteristics for
the three major lipid phenotypes of familial combined hyperlipidemia.
Arterioscler Thromb Vasc Biol.
2003;
23
1289-1294
- 14
Georgieva A M, van Greevenbrock M M, Krauss R M. et al .
Subclasses of low-density lipoprotein and very low-density lipoprotein in familial
combined hyperlipidemia: relationship to multiple lipoprotein phenotype.
Arterioscler Thromb Vasc Biol.
2004;
24
744-749
- 15
Zambon A, Brown B G, Deeb S S, Brunzell J D.
Genetics of apolipoprotein B and apolipoprotein A-I and premature coronary artery
disease.
J Intern Med.
2006;
259
473-480
- 16
Genest Jr J J, Martin-Munley S S, McNamara J R. et al .
Familial lipoprotein disorders in patients with premature coronary artery disease.
Circulation.
1992;
85
2025-2033
- 17
Austin M A, Brunzell J D, Fitch W L, Krauss R M.
Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia.
Arteriosclerosis.
1990;
10
520-530
- 18
Hokanson J E, Austin M A, Zambon A, Brunzell J D.
Plasma triglyceride and LDL heterogeneity in familial combined hyperlipidemia.
Arterioscler Thromb.
1993;
13
427-433
- 19
Howard B V.
Insulin resistance and lipid metabolism.
Am J Cardiol.
1999;
84
28J-32J
- 20
Semenkovich C F.
Insulin resistance and atherosclerosis.
J Clin Invest.
2006;
116
1813-1822
- 21 Richter W O, Eckardstein A von.
Fettstoffwechsel. In: Siegenthaler W, Blum H (Hrsg.) Klinische Pathophysiologie, 9. Auflage. Stuttgart;
Thieme 2006
- 22
Grundy S M, Cleeman J I, Merz C NE. et al .
Implications of recent clinical trials for the National Cholesterol Education Program
Treatment Panel III Guidelines.
Circulation.
2004;
110
227-229
- 23
Välimäki M, Taskinen M-R, Ylikahri R. et al .
Comparison of the effects of two different doses of alcohol on serum lipoproteins,
HDL-subfractions and apolipoproteins A-I and A-II: a controlled study.
Eur J Clin Invest.
1988;
18
472-480
- 24
Savolainen M J, Baroana E, Leo M A, Lieber C S.
Pathogenesis of the hypertriglyceridemia at early stages of alcoholic liver injury
in the baboon.
J Lipid Res.
1986;
27
1073-1089
- 25
Grunnet N, Kondrup J.
The effect of ethanol on the ß-oxidation of fatty acids.
Alcohol Clin Exp Res.
1986;
10
64S-68S
- 26
Mensink R P, Zock P L, Kester A DM, Katan M B.
Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL
cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled
trials.
Am J Clin Nutr.
2003;
77
146-1155
- 27
Mittendorfer B, Sidossis L S.
Mechanism for the increase in plasma triacylglycerol concentrations after consumption
of short-term, high-carbohydrate diets.
Am J Clin Nutr.
2001;
73
892-899
- 28
de Lany J P, Windhauser M M, Champagne C M, Bray G A.
Differential oxidation of individual fatty acids in humans.
Am J Clin Nutr.
2000;
72
905-911
- 29
Bach A C, Ingenbleek Y, Frey A.
The usefulness of dietary medium-chain triglycerides in body weight control: fact
or fancy?.
J Lipid Res.
1997;
37
708-726
- 30
Harris W S.
n-3 fatty acids and lipoproteins: comparison of results from human and animal studies.
Lipids.
1996;
31
243-252
- 31
Calabresi L, Donati D, Pazzucconi F, Sirtori C R, Franceschini G.
Omacor in familial combined hyperlipidemia: effects on lipids and low density lipoprotein
subclasses.
Atherosclerosis.
2000;
148
387-396
- 32
Pschierer V, Richter W O, Schwandt P.
Primary chylomicronemia in patients with severe familial hypertriglyceridemia responds
to long-term treatment with n-3 fatty acids.
J Nutr.
1995;
125
1490-1495
- 33
Schoonjans K, Watanabe M, Suzuki H. et al .
Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated
by a peroxisome proliferator response element in the C promoter.
J Biol Chem.
1995;
270
19 269-19 276
- 34
Martin G, Schoonjans K, Lefebvre A-M, Staels B, Auwerx J.
Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA
synthetase genes by PPAR α and PPAR γ activators.
J Biol Chem.
1997;
272
28.210-28.217
- 35
Lefebvre A-M, Peinado-Onsurbe J, Leitersdorf I. et al .
Regulation of lipoprotein metabolism by thiazolidindiones occurs through a distinct
but complementary mechanism relative to fibrates.
Arterioscler Thromb Vasc Biol.
1997;
17
1756-1764
- 36
Montori V M, Farmer A, Wollan P C, Dinneen S F.
Fish oil supplementation in type 2 diabetes.
Diabetes Care.
2000;
23
1407-1415
- 37
Chajek-Shaul T, Berry E M, Ziv E. et al .
Smoking depresses adipose lipoprotein lipase response to oral glucose.
Eur J Clin Invest.
1990;
20
299-304
- 38 Richter W O, Schwandt P.
Medikamentöse Therapie von Fettstoffwechselstörungen. In: Schwandt P, Richter WO, Parhofer KG Handbuch der Fettstoffwechselstörungen. Stuttgart;
Schattauer 2001: 436-527
- 39
Rubins H B, Robins S J, Collins D. et al .
Gemfibrozil for the secondary prevention of coronary heart disease in men with low
levels of high-density lipoprotein cholesterol.
N Engl J Med.
1999;
341
410-418
- 40
Otvos J D, Collins D, Freedman D S. et al .
Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary
events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density
Lipoprotein Intervention Trial.
Circulation.
2006;
113
1556-1563
- 41
DAIS Study Group .
Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes:
The Diabetes Atherosclerosis Intervention Study, a randomised study.
Lancet.
2001;
357
905-910
- 42
Keech A, Simes R J, Barter P. et al .
Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with
type 2 diabetes mellitus (the FIELD study).
Lancet.
2005;
366
1849-1861
Werner O. Richter
Institut für Fettstoffwechsel und Hämorheologie
Blumenstraße 6
86949 Windach
Phone: 08193/5389
Fax: 08193/5398
Email: ifh-Richter@t-online.de