Abstract
A new polyionic resin-bound tetraphenylborate has been prepared, which can serve as
efficient phenylating agent in Pd-catalyzed Suzuki-Miyaura (SM) coupling with aryl
halides in the absence of any base. The conditions are mild, operationally simple
and the polyionic resin can be recharged and reused for several runs.
Key words
polyionic resins - tetraphenylborate - Suzuki-Miyaura coupling - base-free conditions
- biphenyls
References and Notes
For reviews, see:
<A NAME="RD23207ST-1A">1a </A>
Hassan J.
Sevignon M.
Gozzi C.
Schulz E.
Lemaire M.
Chem. Rev.
2002,
102:
1359
<A NAME="RD23207ST-1B">1b </A>
Kotha S.
Lahiri K.
Kashinath D.
Tetrahedron
2002,
58:
9633
<A NAME="RD23207ST-1C">1c </A>
Chemler SR.
Trauner D.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4544
<A NAME="RD23207ST-1D">1d </A>
Suzuki A.
J. Organomet. Chem.
1999,
576:
147
<A NAME="RD23207ST-1E">1e </A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RD23207ST-1F">1f </A>
Miyaura N.
Top. Curr. Chem.
2002,
219:
11
<A NAME="RD23207ST-1G">1g </A>
Bellina F.
Carpita A.
Rossi R.
Synthesis
2004,
2419
<A NAME="RD23207ST-2">2 </A>
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4442
<A NAME="RD23207ST-3A">3a </A>
Leadbeater NE.
Marco M.
Angew. Chem. Int. Ed.
2003,
42:
1407
<A NAME="RD23207ST-3B">3b </A>
Leadbeater NE.
Marco M.
J. Org. Chem.
2003,
68:
5660
<A NAME="RD23207ST-3C">3c </A>
Arvela RK.
Leadbeater NE.
Sangi MS.
Williams VA.
Granados P.
Singer RD.
J. Org. Chem.
2005,
70:
161
<A NAME="RD23207ST-4A">4a </A>
Yan J.
Hu W.
Zhou W.
Synth. Commun.
2006,
36:
2097
<A NAME="RD23207ST-4B">4b </A>
Yan J.
Zhou Z.
Zhu M.
Synth. Commun.
2006,
36:
1495
<A NAME="RD23207ST-5A">5a </A>
Molander GA.
Rivero MR.
Org. Lett.
2002,
4:
107
<A NAME="RD23207ST-5B">5b </A>
Molander GA.
Biolatto B.
J. Org. Chem.
2003,
68:
4302
<A NAME="RD23207ST-5C">5c </A>
Lidstrom P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9925
<A NAME="RD23207ST-5D">5d </A>
Kabalka GW.
Al-Masum M.
Tetrahedron Lett.
2005,
46:
6329
<A NAME="RD23207ST-6A">6a </A>
Kirschning A.
Monenschein H.
Wittenberg R.
Chem. Eur. J.
2000,
6:
4445
<A NAME="RD23207ST-6B">6b </A>
Keay JG.
Scriven EFV.
Chem. Ind. (London)
1994,
53:
339
<A NAME="RD23207ST-6C">6c </A>
Khound S.
Das PJ.
Tetrahedron
1997,
53:
9749
<A NAME="RD23207ST-7">7 </A>
Farrall MJ.
Fréchet JMJ.
J. Org. Chem.
1976,
41:
3877
<A NAME="RD23207ST-8">8 </A>
Frenette R.
Friesen RW.
Tetrahedron Lett.
1994,
35:
9177
For some recent examples, see:
<A NAME="RD23207ST-9A">9a </A>
Roller S.
Turk H.
Stumbe J.-F.
Rapp W.
Haag R.
J. Comb. Chem.
2006,
8:
350
<A NAME="RD23207ST-9B">9b </A>
Zheng Y.
Stevens PD.
Gao Y.
J. Org. Chem.
2006,
71:
537
<A NAME="RD23207ST-9C">9c </A>
Nielsen TE.
Quement SL.
Meldal M.
Tetrahedron Lett.
2005,
46:
7959
<A NAME="RD23207ST-9D">9d </A>
Brown JF.
Krajnc P.
Cameron NR.
Ind. Eng. Chem. Res.
2005,
44:
8565
<A NAME="RD23207ST-9E">9e </A>
Bork JT.
Lee JW.
Chang Y.-T.
Tetrahedron Lett.
2003,
44:
6141
<A NAME="RD23207ST-9F">9f </A>
Wade JV.
Krueger CA.
J. Comb. Chem.
2003,
5:
267
<A NAME="RD23207ST-9G">9g </A>
Hebel A.
Haag R.
J. Org. Chem.
2002,
67:
9452
As compared to other polymeric frameworks, examples using solid polyionic resins to
immobilize organoboron species for use in SM couplings are limited. A few examples
on the immobilization of arylboronic acids are:
<A NAME="RD23207ST-10A">10a </A>
Wulff G.
Schmidt H.
Witt H.
Zentel R.
Angew. Chem., Int. Ed. Engl.
1994,
33:
188
<A NAME="RD23207ST-10B">10b </A>
Guiles JW.
Johnson SG.
Murray WV.
J. Org. Chem.
1996,
61:
5169
<A NAME="RD23207ST-10C">10c </A>
Piettre SR.
Baltzer S.
Tetrahedron Lett.
1997,
38:
1197
<A NAME="RD23207ST-10D">10d </A>
Kell RJ.
Hodge P.
Nisar M.
Williams RT.
J. Chem. Soc., Perkin Trans. 1
2001,
3403
<A NAME="RD23207ST-11">11 </A>
Lobrégat V.
Alcaraz G.
Bienayme H.
Vaultier M.
Chem. Commun.
2001,
817
<A NAME="RD23207ST-12A">12a </A>
Basu B.
Das S.
Das P.
Nanda AK.
Tetrahedron Lett.
2005,
46:
8591
<A NAME="RD23207ST-12B">12b </A>
Basu B.
Das P.
Das S.
Mol. Diversity
2005,
9:
259
<A NAME="RD23207ST-12C">12c </A>
Basu B.
Bhuiyan MMH.
Das P.
Hossain I.
Tetrahedron Lett.
2003,
44:
8931
<A NAME="RD23207ST-13">13 </A>
Amberlite® IRA-900 resin (chloride form; 2.50 g) was stirred with aq NaBPh4 (1.73 g) until complete exchange as judged by Cl- loss (AgNO3 ). The exchanged resin was washed with H2 O, acetone and dried to give the tetra-phenylborate-form resin (3.92 g). The mass
difference between product and starting materials (ca. 310 mg) was comparable with
the calculated difference (296 mg). The resulting borate-bound resin thus contained
a 1.14 mmol g-1 loading of the borate ions and was used directly in the SM coupling reactions.
<A NAME="RD23207ST-14">14 </A>
Suzuki A.
Chem. Commun.
2005,
4759
<A NAME="RD23207ST-15A">15a </A>
Miyaura N.
Ishiyama T.
Ishikawa M.
Suzuki A.
Tetrahedron Lett.
1986,
27:
6369
<A NAME="RD23207ST-15B">15b </A>
Miyaura N.
Ishiyama T.
Sasaki H.
Ishikawa M.
Satoh M.
Suzuki A.
J. Am. Chem. Soc.
1989,
111:
314
<A NAME="RD23207ST-16">16 </A>
Gropen O.
Haaland A.
Acta. Chem. Scand.
1973,
27:
521
<A NAME="RD23207ST-17">17 </A>
Miyaura N.
Yamada K.
Suginome H.
Suzuki A.
J. Am. Chem. Soc.
1985,
107:
972
<A NAME="RD23207ST-18">18 </A>
Darses S.
Genet JP.
Brayer JL.
Tetrahedron Lett.
1997,
37:
4393
<A NAME="RD23207ST-19A">19a </A>
Fürstner A.
Seidel G.
Tetrahedron
1995,
51:
11165
<A NAME="RD23207ST-19B">19b </A>
Smith GB.
Denezy GC.
Hughes DL.
King AO.
Verhoeven TR.
J. Org. Chem.
1994,
59:
8151
<A NAME="RD23207ST-19C">19c </A>
Aliprantis AO.
Canary JW.
J. Am. Chem. Soc.
1994,
116:
6985
<A NAME="RD23207ST-19D">19d </A>
Wright SW.
Hageman DL.
McClure LD.
J. Org. Chem.
1994,
59:
6095
<A NAME="RD23207ST-20">20 </A>
Representative Procedure for Suzuki-Miyaura Reaction : A mixture of 3-iodotoluene (218 mg, 1 mmol), Amberlite resin (Ph4 B- form) (1 g, 1.14 mmol) and Pd(OAc)2 (4.5 mg, 2 mol%) was taken in DMF (2 mL) and heated in an oil bath at 85 °C for 2
h. After cooling, the reaction mixture was diluted with H2 O (5 mL) and the resin was filtered off. The filtrate was extracted with Et2 O (3 × 15 mL) and the combined organic layers were dried over anhyd Na2 SO4 . Removal of the solvent left an oily residue, which was passed through a short column
of silica gel (60-120 mesh) eluting with light petroleum to afford 3-phenyltoluene
as a colorless liquid (161 mg, yield 96%). IR (neat): 3031, 2900, 1604 cm-1 . 1 H NMR (300 MHz, CDCl3 ): δ = 7.84-7.87 (m, 2 H), 7.56-7.71 (m, 6 H), 7.42 (d, J = 7.2 Hz, 1 H), 2.67 (s, 3 H). 13 C NMR (75 MHz, CDCl3 ): δ = 141.3, 141.2, 138.2, 128.7, 128.6, 127.94, 127.89, 127.2, 127.1, 124.2, 21.5.
<A NAME="RD23207ST-21">21 </A> For a review, see:
Littke AF.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
4176
<A NAME="RD23207ST-22A">22a </A>
Old DW.
Wolfe JP.
Buchwald SL.
J. Am. Chem. Soc.
1998,
120:
9722
<A NAME="RD23207ST-22B">22b </A>
Botella L.
Nájera C.
Angew. Chem. Int. Ed.
2002,
41:
179
<A NAME="RD23207ST-23">23 </A>
After the first run, the resin beads were filtered off, washed with MeOH, then with
H2 O and finally rinsed again with aq NaBPh4 solution. The resulting borate-bound resin could be reused for the SM reaction. Employing
the recovered and recharged resin (tetraphenylborate form) for SM coupling with 3-iodotoluene
(1 mmol scale), provided the desired biaryl in 95% yield. The three subsequent runs
gave the biaryl in 92%, 92% and 88% yields.