Der Nuklearmediziner 2008; 31(1): 41-50
DOI: 10.1055/s-2008-1004619
CME Beitrag

© Georg Thieme Verlag Stuttgart · New York

FDG-PET in der Bestrahlungsplanung von nichtkleinzelligen Bronchialkarzinomen

FDG-PET in Radiotherapy Planning of Non Small Cell Lung CancerU. Nestle1 , C. Rübe2
  • 1Klinik für Nuklearmedizin
  • 2Klinik für Radioonkologie, Universitätsklinikum des Saarlandes
Further Information

Publication History

Publication Date:
28 February 2008 (online)

Zusammenfassung

Neben dem Einsatz der FDG-PET beim Staging und Restaging von nichtkleinzelligen Bronchialkarzinomen (NSCLC) ist die Integration von FDG-PET-Daten in die Bestrahlungsplanung ein zukunftsträchtiger Einsatzbereich der PET in der Strahlentherapie. Der mögliche Vorteil für den Patienten liegt in der genaueren Detektion von tumorbefallenen Regionen für die Zielvolumendefinition. Insbesondere in Fällen mit postobstruktiven Belüftungsstörungen senkt die FDG-PET erheblich die Unsicherheit, die sich in der Varianz der Volumendefinition zwischen verschiedenen Therapeuten ausdrückt. Auch die höhere diagnostische Genauigkeit der FDG-PET im Vergleich mit der CT bezüglich des mediastinalen Lymphknotenstagings bei NSCLC könnte zur Beschränkung der Bestrahlung nur auf tumorbefallene Areale führen, wenn die diesbezüglichen Zielvolumenkonzepte entsprechend adaptiert werden. Ein noch ungelöstes Problem ist die beste Art der technischen Konturierung der auflösungs- und bewegungsbedingt nur unscharf abbildbaren FDG-Anreicherung für die Zielvolumendefinition. Hier sind möglicherweise kontrastorientierte Verfahren der gangbarste Weg. Klinische Studien werden zeigen, ob und wie groß der Benefit der FDG-basierten Betrahlungsplanung für Patienten mit NSCLC wirklich ist. Ziel ist das Erreichen höherer, wirksamerer Strahlendosen in präzise definierten kleinen Zielvolumina bei gleichzeitig optimaler Schonung des gesunden Gewebes.

Abstract

Besides the use of FDG-PET in staging and restaging of patients with non-small cell lung cancer (NSCLC), the integration of PET-data into the radiotherapy planning process is a promising field for PET in radiooncology. The possible benefit of the patients lies in the more exact definition of malignant structures for target volume definition. Especially in cases with post-obstructive atelectasis the use of FDG-PET significantly improves the inter-observer-variability of target volumes. Moreover, the higher diagnostic accuracy in lymph node staging compared to CT could lead to a restriction of irradiation fields to FDG positive areas, if clinical target volume concepts were adapted to the new technologies available. Still unsolved is the problem of which is the best method for technical delineation of PET-based target volumes, as due to resolution and movement effects, the FDG-accumulations appear blurred. Here, possibly contrast-oriented methods are of use. Clinical studies will show the benefit of FDG-PET based target volume definition for patients with NSCLC concerning local control and normal tissue complication probability. The aim is to apply higher radiation doses in more exactly defined volumes, while simultaneously sparing normal tissues.

Literatur

  • 1 Caldwell C B, Mah K, Skinner M, Danjoux C E. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET.  Int J Radiat Oncol Biol Phys. 2003;  55 1381-1393
  • 2 Caldwell C B, Mah K, Ung Y C. et al . Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion.  Int J Radiat Oncol Biol Phys. 2001;  51 923-931
  • 3 De Ruysscher D, Wanders S, van Haren E. et al . Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study.  Int J Radiat Oncol Biol Phys. 2005;  62 988-994
  • 4 Deniaud-Alexandre E, Touboul E, Lerouge D. et al . Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer.  Int J Radiat Oncol Biol Phys. 2005;  63 1432-1441
  • 5 Dwamena B A, Sonnad S S, Angobaldo J O, Wahl R L. Metastases from non-small cell lung cancer: mediastinal staging in the 1990s - meta-analytic comparison of PET and CT.  Radiology. 1999;  213 530-536
  • 6 Erdi Y E, Mawlawi O, Larson S M. et al . Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding.  Cancer. 1997;  80 2505-2509
  • 7 Eschmann S M, Friedel G, Paulsen F. et al . Impact of staging with 18F-FDG-PET on outcome of patients with stage III non-small cell lung cancer: PET identifies potential survivors.  Eur J Nucl Med Mol Imaging. 2007;  34 54-59
  • 8 Gambhir S S, Czernin J, Schwimmer J, Silverman D H, Coleman R E, Phelps M E. A tabulated summary of the FDG PET literature.  J Nucl Med. 2001;  42 1S-93S
  • 9 Hellwig D, Groschel A, Graeter T P. et al . Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer.  Eur J Nucl Med Mol Imaging. 2006;  33 13-21
  • 10 Hellwig D, Ukena D, Paulsen F, Bamberg M, Kirsch C M. Metaanalyse zum Stellenwert der Positronen-Emissions-Tomographie mit F-18-Fluorodesoxyglukose (FDG-PET) bei Lungentumoren. Diskussionsbasis der deutschen Konsensus-Konferenz Onko-PET 2000.  Pneumologie. 2001;  55 367-377
  • 11 Kalff V, Hicks R J, MacManus M P. et al . Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study.  J Clin Oncol. 2001;  19 111-118
  • 12 Kiricuta I C. Selection and delineation of lymph node target volume for lung cancer conformal radiotherapy. Proposal for standardizing terminology based on surgical experience.  Strahlenther Onkol. 2001;  177 410-423
  • 13 MacManus M P, Hicks R J, Matthews J P. et al . High rate of detection of unsuspected distant metastases by pet in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy.  Int J Radiat Oncol Biol Phys. 2001;  50 287-293
  • 14 Messa C, Di Muzio N, Picchio M, Gilardi M C, Bettinardi V, Fazio F. PET / CT and radiotherapy.  Q J Nucl Med Mol Imaging. 2006;  50 4-14
  • 15 Mix M, Kremp S. PET in der Strahlentherapie: Zielvolumen.  Der Nuklearmediziner. 2008;  31 21-24
  • 16 Munley M T, Marks L B, Scarfone C. et al . Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects.  Lung Cancer. 1999;  23 105-114
  • 17 Nestle U, Hellwig D, Schmidt S. et al . 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small-cell lung cancer.  Mol Imaging Biol. 2002;  4 257-263
  • 18 Nestle U, Kremp S, Grosu A. Practical integration of [(18)F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): The technical basis, ICRU-target volumes, problems, perspectives.  Radiother Oncol. 2006;  81 209-225
  • 19 Nestle U, Kremp S, Schaefer-Schuler A. et al . Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer.  J Nucl Med. 2005;  46 1342-1348
  • 20 Nestle U, Schaefer-Schuler A, Kremp S. et al . Target volume definition for (18)F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer.  Eur J Nucl Med Mol Imaging. 2007;  34 453-462
  • 21 Nestle U, Walter K, Schmidt S. et al . 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis.  Int J Radiat Oncol Biol Phys. 1999;  44 593-597
  • 22 Paulino A C, Johnstone P A. FDG-PET in radiotherapy treatment planning: Pandora's box?.  Int J Radiat Oncol Biol Phys. 2004;  59 4-5
  • 23 Rosenzweig K E, Sura S, Jackson A, Yorke E. Involved-Field Radiation Therapy for Inoperable Non Small-Cell Lung Cancer.  J Clin Oncol. 2007;  25 5557-5561
  • 24 Schmücking M, Baum R P, Bonnet R, Junker K, Muller K M. [Correlation of histologic results with PET findings for tumor regression and survival in locally advanced non-small cell lung cancer after neoadjuvant treatment].  Pathologe. 2005;  26 178-189
  • 25 Steenbakkers R J, Duppen J C, Fitton I. et al . Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis.  Int J Radiat Oncol Biol Phys. 2006;  64 435-448
  • 26 Van de Steene J, Linthout N, de Mey J. et al . Definition of gross tumor volume in lung cancer: inter-observer variability.  Radiother Oncol. 2002;  62 37-49
  • 27 van Tinteren H, Hoekstra O S, Smit E F. et al . Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial.  Lancet. 2002;  359 1388-1393
  • 28 Vansteenkiste J F, Stroobants S G, De Leyn P R, Dupont P J, Verbeken E K. Potential use of FDG-PET scan after induction chemotherapy in surgically staged III a-N2 non-small-cell lung cancer: a prospective pilot study. The Leuven Lung Cancer Group.  Ann Oncol. 1998;  9 1193-1198
  • 29 Weber W A, Dietlein M, Hellwig D, Kirsch C M, Schicha H, Schwaiger M. PET mit 18F-Fluorodeoxyglukose in der Diagnostik des nicht kleinzelligen Bronchialkarzinoms: evidenzbasierte Empfehlungen und Kosten / Nutzenabwägungen.  Nuklearmedizin. 2003;  42 135-144
  • 30 Weber W A, Petersen V, Schmidt B. et al . Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use.  J Clin Oncol. 2003;  21 2651-2657

PD Dr. U. Nestle

Klinik für Nuklearmedizin · Universitätsklinikum des Saarlandes

Kirrberger Str.

66421 Homburg / Saar

Email: Ursula.Nestle@uks.eu

    >