Diabetologie und Stoffwechsel 2008; 3(2): 105-111
DOI: 10.1055/s-2008-1004729
Übersicht

© Georg Thieme Verlag Stuttgart · New York

Die frühe Fettleber und ihre Folgen

The Low Grade Fatty Liver SyndromeN. Stefan1 , K. Kantartzis1 , H.-U. Häring1
  • 1Innere Medizin, Abteilung für Endokrinologie, Diabetologie, Angiologie, Nephrologie und Klinische Chemie, Universitätsklinik Tübingen
Further Information

Publication History

2008

2008

Publication Date:
07 April 2008 (online)

Zusammenfassung

Die nichtalkoholische Fettleber ist stark mit Insulinresistenz, Typ-2-Diabetes und Atherosklerose assoziiert. Darüber hinaus sagt eine Fettleber die Erkrankungswahrscheinlichkeit für Typ-2-Diabetes und Atherosklerose voraus, was eine kausale Rolle der Fettleber in der Pathogenese dieser Erkrankungen impliziert. Diese Erkenntnisse beruhen vor allem auf Studien die Personen mit einem relativ hohen Grad der Leberverfettung untersuchten. Folgerichtig zielen Strategien zur Prävention und Therapie der Fettleber darauf hin, diese Menschen einzuschließen. Es gibt allerdings zunehmend Hinweise darauf, dass bereits eine frühe, moderat ausgeprägte Leberverfettung einen starken Einfluss auf den Glukose- und Lipidstoffwechsel hat. In diesem Bereich, unter 5,6 % Leberfett gemessen mit der Protonen-Magnetresonanz-Spektroskopie, spielen sich offensichtlich bereits relevante Veränderungen der Genregulation und des Lebermetabolismus ab. Die Rolle der frühen Fettleber in der Pathogenese des Typ-2-Diabetes und der Atherosklerose muss daher viel intensiver erforscht werden.

Abstract

Nonalcoholic fatty liver disease strongly associates with insulin resistance, type 2 diabetes and atherosclerosis. Moreover, fatty liver predicts type 2 diabetes and atherosclerosis, suggesting a causative role of fatty liver in the pathophysiology of these diseases. These findings come from studies mainly including subjects with a relatively high degree of hepatic steatosis. Accordingly strategies aiming at prevention and therapy of fatty liver target these individuals. However, there is increasing evidence that a low grade fatty liver already impacts on glucose and lipid metabolism. Under the cut-off liver fat 5.6 %, determined by proton magnetic resonace spectroscopy, alterations of gene regulation and liver metabolism are already operative. Thus the role of a low grade fatty liver in the pathophysiology of type 2 diabetes and atherosclerosis needs to be studied more intensively.

Literatur

  • 1 Angulo P. Nonalcoholic fatty liver disease.  N Engl J Med. 2002;  346 1221-1231
  • 2 Browning J D, Szczepaniak L S, Dobbins R, Nuremberg P, Horton J D, Cohen J C, Grundy S M, Hobbs H H. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity.  Hepatology. 2004;  40 1387-1395
  • 3 Szczepaniak L S, Nurenberg P, Leonard D, Browning J D, Reingold J S, Grundy S, Hobbs H H, Dobbins R L. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population.  Am J Physiol Endocrinol Metab. 2005;  288 E462-E468
  • 4 Tominaga K, Kurata J H, Chen Y K, Fujimoto E, Miyagawa S, Abe I, Kusano Y. Prevalence of fatty liver in Japanese children and relationship to obesity. An epidemiological ultrasonographic survey.  Dig Dis Sci. 1995;  40 2002-2009
  • 5 Schwimmer J B, Deutsch R, Kahen T, Lavine J E, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents.  Pediatrics. 2006;  118 1388-1393
  • 6 Angulo P, Lindor K D. Non-alcoholic fatty liver disease.  J Gastroenterol Hepatol. 2002;  17 Suppl S186-S190
  • 7 Caldwell S H, Oelsner D H, Iezzoni J C, Hespenheide E E, Battle E H, Driscoll C J. Cryptogenic cirrhosis: clinical characterization and risk factors for underlying disease.  Hepatology. 1999;  29 664-669
  • 8 Wieckowska A, McCullough A J, Feldstein A E. Noninvasive diagnosis and monitoring of nonalcoholic steatohepatitis: present and future.  Hepatology. 2007;  46 582-589
  • 9 Neuschwander-Tetri B A, Caldwell S H. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference.  Hepatology. 2003;  37 1202-1219
  • 10 McCullough A J. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease.  Clin Liver Dis. 2004;  8 521-533
  • 11 Adams L A, Angulo P, Lindor K D. Nonalcoholic fatty liver disease.  CMAJ. 2005;  172 899-905
  • 12 Yano E, Tagawa K, Yamaoka K, Mori M. Test validity of periodic liver function tests in a population of Japanese male bank employees.  J Clin Epidemiol. 2001;  54 945-951
  • 13 Despres J P, Lemieux I. Abdominal obesity and metabolic syndrome.  Nature. 2006;  444 881-887
  • 14 Trujillo M E, Scherer P E. Adipose tissue-derived factors: impact on health and disease.  Endocr Rev. 2006;  27 762-778
  • 15 Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors.  Endocr Rev. 2005;  26 439-451
  • 16 Stefan N, Stumvoll M. Adiponectin-its role in metabolism and beyond.  Horm Metab Res. 2002;  34 469-474
  • 17 Staiger H, Staiger K, Stefan N, Häring H U. Adiponectin: Physiologie und Klinik eines endogenen Insulinsensitizers.  Diabetes und Stoffwechsel. 2005;  14 289-298
  • 18 Donnelly K L, Smith C I, Schwarzenberg S J, Jessurun J, Boldt M D, Parks E J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.  J Clin Invest. 2005;  115 1343-1351
  • 19 Lavoie J M, Gauthier M S. Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise.  Cell Mol Life Sci. 2006;  63 1393-1409
  • 20 Biddinger S B, Almind K, Miyazaki M, Kokkotou E, Ntambi J M, Kahn C R. Effects of diet and genetic background on sterol regulatory element-binding protein-1c, stearoyl-CoA desaturase 1, and the development of the metabolic syndrome.  Diabetes. 2005;  54 1314-1323
  • 21 Storlien L H, Higgins J A, Thomas T C, Brown M A, Wang H Q, Huang X F, Else P L. Diet composition and insulin action in animal models.  Br J Nutr. 2000;  83 Suppl 1 S85-S90
  • 22 Clarke S D. Nonalcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G865-G869
  • 23 Sekiya M, Yahagi N, Matsuzaka T, Najima Y, Nakakuki M, Nagai R, Ishibashi S, Osuga J, Yamada N, Shimano H. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression.  Hepatology. 2003;  38 1529-1539
  • 24 Hussein O, Grosovski M, Lasri E, Svalb S, Ravid U, Assy N. Monounsaturated fat decreases hepatic lipid content in non-alcoholic fatty liver disease in rats.  World J Gastroenterol. 2007;  13 361-368
  • 25 Capristo E, Miele L, Forgione A, Vero V, Farnetti S, Mingrone G, Greco A V, Gasbarrini G, Grieco A. Nutritional aspects in patients with non-alcoholic steatohepatitis (NASH).  Eur Rev Med Pharmacol Sci. 2005;  9 265-268
  • 26 Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, Faga E, Silli B, Pagano G. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis.  Hepatology. 2003;  37 909-916
  • 27 Cortez-Pinto H, Jesus L, Barros H, Lopes C, Moura M C, Camilo M E. How different is the dietary pattern in non-alcoholic steatohepatitis patients?.  Clin Nutr. 2006;  25 816-823
  • 28 Tamura Y, Tanaka Y, Sato F, Choi J B, Watada H, Niwa M, Kinoshita J, Ooka A, Kumashiro N, Igarashi Y, Kyogoku S, Maehara T, Kawasumi M, Hirose T, Kawamori R. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients.  J Clin Endocrinol Metab. 2005;  90 3191-3196
  • 29 Larson-Meyer D E, Heilbronn L K, Redman L M, Newcomer B R, Frisard M I, Anton S, Smith S R, Alfonso A, Ravussin E. Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight subjects.  Diabetes Care. 2006;  29 1337-1344
  • 30 Iizuka K, Bruick R K, Liang G, Horton J D, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis.  Proc Natl Acad Sci USA. 2004;  101 7281-7286
  • 31 Yamashita H, Takenoshita M, Sakurai M, Bruick R K, Henzel W J, Shillinglaw W, Arnot D, Uyeda K. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver.  Proc Natl Acad Sci USA. 2001;  98 9116-9121
  • 32 Kang H, Greenson J K, Omo J T, Chao C, Peterman D, Anderson L, Foess-Wood L, Sherbondy M A, Conjeevaram H S. Metabolic syndrome is associated with greater histologic severity, higher carbohydrate, and lower fat diet in patients with NAFLD.  Am J Gastroenterol. 2006;  101 2247-2253
  • 33 Solga S, Alkhuraishe A R, Clark J M, Torbenson M, Greenwald A, Diehl A M, Magnuson T. Dietary composition and nonalcoholic fatty liver disease.  Dig Dis Sci. 2004;  49 1578-1583
  • 34 Yancy Jr W S, Olsen M K, Guyton J R, Bakst R P, Westman E C. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial.  Ann Intern Med. 2004;  140 769-777
  • 35 Minehira K, Vega N, Vidal H, Acheson K, Tappy L. Effect of carbohydrate overfeeding on whole body macronutrient metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans.  Int J Obes Relat Metab Disord. 2004;  28 1291-1298
  • 36 Le K A, Tappy L. Metabolic effects of fructose.  Curr Opin Clin Nutr Metab Care. 2006;  9 469-475
  • 37 Faeh D, Minehira K, Schwarz J M, Periasamy R, Park S, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men.  Diabetes. 2005;  54 1907-1913
  • 38 Elliott S S, Keim N L, Stern J S, Teff K, Havel P J. Fructose, weight gain, and the insulin resistance syndrome.  Am J Clin Nutr. 2002;  76 911-922
  • 39 Sanyal A J, Mofrad P S, Contos M J, Sargeant C, Luketic V A, Sterling R K, Stravitz R T, Shiffman M L, Clore J, Mills A S. A pilot study of vitamin E versus vitamin E and pioglitazone for the treatment of nonalcoholic steatohepatitis.  Clin Gastroenterol Hepatol. 2004;  2 1107-1115
  • 40 Dufour J F, Oneta C M, Gonvers J J, Bihl F, Cerny A, Cereda J M, Zala J F, Helbling B, Steuerwald M, Zimmermann A. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin e in nonalcoholic steatohepatitis.  Clin Gastroenterol Hepatol. 2006;  4 1537-1543
  • 41 Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism.  Arterioscler Thromb Vasc Biol. 2005;  25 2020-2030
  • 42 Rader D J. Liver X receptor and farnesoid X receptor as therapeutic targets.  Am J Cardiol. 2007;  100 n15-n19
  • 43 Lundasen T, Galman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man.  J Intern Med. 2006;  260 530-536
  • 44 Kuipers F, Stroeve J H, Caron S, Staels B. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control.  Curr Opin Lipidol. 2007;  18 289-297
  • 45 Houten S M, Watanabe M, Auwerx J. Endocrine functions of bile acids.  EMBO J. 2006;  25 1419-1425
  • 46 Kotronen A, Juurinen L, Hakkarainen A, Westerbacka J, Corner A, Bergholm R, Yki-Jarvinen H. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects.  Diabetes Care. 2008;  31 165-169
  • 47 Church T S, Kuk J L, Ross R, Priest E L, Biltoft E, Blair S N. Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease.  Gastroenterology. 2006;  130 2023-2030
  • 48 Hsiao T J, Chen J C, Wang J D. Insulin resistance and ferritin as major determinants of nonalcoholic fatty liver disease in apparently healthy obese patients.  Int J Obes Relat Metab Disord. 2004;  28 167-172
  • 49 Kelley D E, McKolanis T M, Hegazi R A, Kuller L H, Kalhan S C. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance.  Am J Physiol Endocrinol Metab. 2003;  285 E906-E916
  • 50 Thamer C, Machann J, Haap M, Stefan N, Heller E, Schnodt B, Stumvoll M, Claussen C, Fritsche A, Schick F, Haring H. Intrahepatic lipids are predicted by visceral adipose tissue mass in healthy subjects.  Diabetes Care. 2004;  27 2726-2729
  • 51 Kantartzis K, Rittig K, Balletshofer B, Machann J, Schick F, Porubska K, Fritsche A, Haring H U, Stefan N. The relationships of plasma adiponectin with a favorable lipid profile, decreased inflammation, and less ectopic fat accumulation depend on adiposity.  Clin Chem. 2006;  52 1934-1942
  • 52 Kotronen A, Westerbacka J, Bergholm R, Pietilainen K H, Yki-Jarvinen H. Liver fat in the metabolic syndrome.  J Clin Endocrinol Metab. 2007;  92 3490-3497
  • 53 Kotronen A, Yki-Jarvinen H. Fatty liver: a novel component of the metabolic syndrome.  Arterioscler Thromb Vasc Biol. 2008;  28 27-38
  • 54 Weisberg S P, McCann D, Desai M, Rosenbaum M, Leibel R L, Ferrante Jr A W. Obesity is associated with macrophage accumulation in adipose tissue.  J Clin Invest. 2003;  112 1796-1808
  • 55 Xu H, Barnes G T, Yang Q, Tan G, Yang D, Chou C J, Sole J, Nichols A, Ross J S, Tartaglia L A, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.  J Clin Invest. 2003;  112 1821-1830
  • 56 Hotamisligil G S. Inflammation and metabolic disorders.  Nature. 2006;  444 860-867
  • 57 Heilbronn L, Smith S R, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus.  Int J Obes Relat Metab Disord. 2004;  28 Suppl 4 S12-S21
  • 58 Roden M. Mechanisms of Disease: hepatic steatosis in type 2 diabetes - pathogenesis and clinical relevance.  Nat Clin Pract Endocrinol Metab. 2006;  2 335-348
  • 59 Kim J K. Fat uses a TOLL-road to connect inflammation and diabetes.  Cell Metab. 2006;  4 417-419
  • 60 Morino K, Petersen K F, Shulman G I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction.  Diabetes. 2006;  55 Suppl 2 S9-S15
  • 61 Nielsen S, Guo Z, Johnson C M, Hensrud D D, Jensen M D. Splanchnic lipolysis in human obesity.  J Clin Invest. 2004;  113 1582-1588
  • 62 Koutsari C, Jensen M D. Thematic review series: patient-oriented research. Free fatty acid metabolism in human obesity.  J Lipid Res. 2006;  47 1643-1650
  • 63 Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn B B, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.  Nat Med. 2002;  8 1288-1295
  • 64 Xu A, Wang Y, Keshaw H, Xu L Y, Lam K S, Cooper G J. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice.  J Clin Invest. 2003;  112 91-100
  • 65 Bugianesi E, Pagotto U, Manini R, Vanni E, Gastaldelli A, de Iasio R, Gentilcore E, Natale S, Cassader M, Rizzetto M, Pasquali R, Marchesini G. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity.  J Clin Endocrinol Metab. 2005;  90 3498-3504
  • 66 Stefan N, Machicao F, Staiger H, Machann J, Schick F, Tschritter O, Spieth C, Weigert C, Fritsche A, Stumvoll M, Haring H U. Polymorphisms in the gene encoding adiponectin receptor 1 are associated with insulin resistance and high liver fat.  Diabetologia. 2005;  48 2282-2291
  • 67 Kantartzis K, Fritsche A, Machicao F, Haring H U, Stefan N. The - 8503 G / A polymorphism of the adiponectin receptor 1 gene is associated with insulin sensitivity dependent on adiposity.  Diabetes Care. 2006;  29 464
  • 68 Wang Y X, Lee C H, Tiep S, Yu R T, Ham J, Kang H, Evans R M. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity.  Cell. 2003;  113 159-170
  • 69 Stefan N, Thamer C, Staiger H, Machicao F, Machann J, Schick F, Venter C, Niess A, Laakso M, Fritsche A, Haring H U. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention.  J Clin Endocrinol Metab. 2007;  92 1827-1833
  • 70 Thamer C, Machann J, Stefan N, Schafer S A, Machicao F, Staiger H, Laakso M, Bottcher M, Claussen C, Schick F, Fritsche A, Haring H U. Variations in PPARD determine the change in body composition during lifestyle intervention: A whole-body magnetic resonance study.  J Clin Endocrinol Metab. 2008;  , Feb 5 [Epub ahead of print]
  • 71 Stefan N, Schafer S, Machicao F, Machann J, Schick F, Claussen C D, Stumvoll M, Haring H U, Fritsche A. Liver fat and insulin resistance are independently associated with the - 514 C > T polymorphism of the hepatic lipase gene.  J Clin Endocrinol Metab. 2005;  90 4238-4243
  • 72 Kantartzis K, Fritsche A, Machicao F, Stumvoll M, Machann J, Schick F, Haring H U, Stefan N. Upstream transcription factor 1 gene polymorphisms are associated with high antilipolytic insulin sensitivity and show gene-gene interactions.  J Mol Med. 2007;  85 55-61
  • 73 Bernard S, Touzet S, Personne I, Lapras V, Bondon P J, Berthezene F, Moulin P. Association between microsomal triglyceride transfer protein gene polymorphism and the biological features of liver steatosis in patients with type II diabetes.  Diabetologia. 2000;  43 995-999
  • 74 Miyazaki M, Kim Y C, Ntambi J M. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis.  J Lipid Res. 2001;  42 1018-1024
  • 75 Stefan N, Peter A, Cegan A, Staiger H, Machann J, Schick F, Claussen C D, Fritsche A, Häring H U, Schleicher E. Low hepatic Stearoyl-CoA Desaturase 1 Activity is associated with Fatty Liver and Insulin Resistance in obese Subjects.  Diabetologia. 2008;  ,  (in press)
  • 76 Thamer C, Machann J, Stefan N, Haap M, Schafer S, Brenner S, Kantartzis K, Claussen C, Schick F, Haring H, Fritsche A. High visceral fat mass and high liver fat are associated with resistance to lifestyle intervention.  Obesity (Silver Spring). 2007;  15 531-538
  • 77 Tolman K G, Fonseca V, Dalpiaz A, Tan M H. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease.  Diabetes Care. 2007;  30 734-743
  • 78 Villanova N, Moscatiello S, Ramilli S, Bugianesi E, Magalotti D, Vanni E, Zoli M, Marchesini G. Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease.  Hepatology. 2005;  42 473-480
  • 79 Targher G, Bertolini L, Padovani R, Rodella S, Zoppini G, Zenari L, Cigolini M, Falezza G, Arcaro G. Relations between carotid artery wall thickness and liver histology in subjects with nonalcoholic fatty liver disease.  Diabetes Care. 2006;  29 1325-1330
  • 80 Brea A, Mosquera D, Martin E, Arizti A, Cordero J L, Ros E. Nonalcoholic fatty liver disease is associated with carotid atherosclerosis: a case-control study.  Arterioscler Thromb Vasc Biol. 2005;  25 1045-1050
  • 81 Targher G. Non-alcoholic fatty liver disease, the metabolic syndrome and the risk of cardiovascular disease: the plot thickens.  Diabet Med. 2007;  24 1-6
  • 82 Targher G, Bertolini L, Poli F, Rodella S, Scala L, Tessari R, Zenari L, Falezza G. Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients.  Diabetes. 2005;  54 3541-3546
  • 83 Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men.  Diabetes Care. 2007;  30 2940-2944
  • 84 Taskinen M R. Diabetic dyslipidaemia: from basic research to clinical practice.  Diabetologia. 2003;  46 733-749
  • 85 Ginsberg H N, Zhang Y L, Hernandez-Ono A. Metabolic syndrome: focus on dyslipidemia.  Obesity (Silver Spring). 2006;  14 Suppl 1 41S-49S
  • 86 Toledo F G, Sniderman A D, Kelley D E. Influence of hepatic steatosis (fatty liver) on severity and composition of dyslipidemia in type 2 diabetes.  Diabetes Care. 2006;  29 1845-1850
  • 87 Adiels M, Taskinen M R, Packard C, Caslake M J, Soro-Paavonen A, Westerbacka J, Vehkavaara S, Hakkinen A, Olofsson S O, Yki-Jarvinen H, Boren J. Overproduction of large VLDL particles is driven by increased liver fat content in man.  Diabetologia. 2006;  49 755-765
  • 88 Kim H J, Kim H J, Lee K E, Kim D J, Kim S K, Ahn C W, Lim S K, Kim K R, Lee H C, Huh K B, Cha B S. Metabolic significance of nonalcoholic fatty liver disease in nonobese, nondiabetic adults.  Arch Intern Med. 2004;  164 2169-2175
  • 89 Cali A M, Zern T L, Taksali S E, de Oliveira A M, Dufour S, Otvos J D, Caprio S. Intrahepatic fat accumulation and alterations in lipoprotein composition in obese adolescents: a perfect proatherogenic state.  Diabetes Care. 2007;  30 3093-3098
  • 90 Adeli K, Taghibiglou C, Van Iderstine S C, Lewis G F. Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance.  Trends Cardiovasc Med. 2001;  11 170-176
  • 91 Taghibiglou C, Rashid-Kolvear F, Van Iderstine S C, Le Tien H, Fantus I G, Lewis G F, Adeli K. Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1 B in a fructose-fed hamster model of insulin resistance.  J Biol Chem. 2002;  277 793-803
  • 92 Kantartzis K, Rittig K, Cegan A, Machann J, Schick F, Balletshofer B, Fritsche A, Schleicher E, Haring H U, Stefan N. Fatty liver is independently associated with alterations in circulating HDL2 and HDL3 subfractions.  Diabetes Care. 2008;  31 366-368
  • 93 Hotamisligil G S. Inflammation and metabolic disorders.  Nature. 2006;  444 860-867
  • 94 Shoelson S E, Lee J, Goldfine A B. Inflammation and insulin resistance.  J Clin Invest. 2006;  116 1793-1801
  • 95 Park S H, Kim B I, Yun J W, Kim J W, Park D I, Cho Y K, Sung I K, Park C Y, Sohn C I, Jeon W K, Kim H, Rhee E J, Lee W Y, Kim S W. Insulin resistance and C-reactive protein as independent risk factors for non-alcoholic fatty liver disease in non-obese Asian men.  J Gastroenterol Hepatol. 2004;  19 694-698
  • 96 Iwasaki T, Nakajima A, Yoneda M, Terauchi Y. Relationship between the serum concentrations of C-reactive protein and parameters of adiposity and insulin resistance in patients with type 2 diabetes mellitus.  Endocr J. 2006;  53 345-356
  • 97 Targher G, Arcaro G. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease.  Atherosclerosis. 2007;  191 235-240
  • 98 Yoneda M, Mawatari H, Fujita K, Iida H, Yonemitsu K, Kato S, Takahashi H, Kirikoshi H, Inamori M, Nozaki Y, Abe Y, Kubota K, Saito S, Iwasaki T, Terauchi Y, Togo S, Maeyama S, Nakajima A. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH.  J Gastroenterol. 2007;  42 573-582
  • 99 Pepys M B, Hirschfield G M. C-reactive protein: a critical update.  J Clin Invest. 2003;  111 1805-1812
  • 100 Denecke B, Graber S, Schafer C, Heiss A, Woltje M, Jahnen-Dechent W. Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A.  Biochem J. 2003;  376 135-145
  • 101 Auberger P, Falquerho L, Contreres J O, Pages G, Le Cam G, Rossi B, Le Cam A. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity.  Cell. 1989;  58 631-640
  • 102 Rauth G, Poschke O, Fink E, Eulitz M, Tippmer S, Kellerer M, Haring H U, Nawratil P, Haasemann M, Jahnen-Dechent W. The nucleotide and partial amino acid sequences of rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor.  Eur J Biochem. 1992;  204 523-529
  • 103 Srinivas P R, Wagner A S, Reddy L V, Deutsch D D, Leon M A, Goustin A S, Grunberger G. Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level.  Mol Endocrinol. 1993;  7 1445-1455
  • 104 Mathews S T, Srinivas P R, Leon M A, Grunberger G. Bovine fetuin is an inhibitor of insulin receptor tyrosine kinase.  Life Sci. 1997;  61 1583-1592
  • 105 Mathews S T, Chellam N, Srinivas P R, Cintron V J, Leon M A, Goustin A S, Grunberger G. Alpha2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor.  Mol Cell Endocrinol. 2000;  164 87-98
  • 106 Mathews S T, Singh G P, Ranalletta M, Cintron V J, Qiang X, Goustin A S, Jen K L, Charron M J, Jahnen-Dechent W, Grunberger G. Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene.  Diabetes. 2002;  51 2450-2458
  • 107 Siddiq A, Lepretre F, Hercberg S, Froguel P, Gibson F. A synonymous coding polymorphism in the alpha2-Heremans-schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians.  Diabetes. 2005;  54 2477-2481
  • 108 Stefan N, Hennige A M, Staiger H, Machann J, Schick F, Krober S M, Machicao F, Fritsche A, Haring H U. Alpha2-Heremans-Schmid glycoprotein / fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans.  Diabetes Care. 2006;  29 853-857
  • 109 Lin X, Braymer H D, Bray G A, York D A. Differential expression of insulin receptor tyrosine kinase inhibitor (fetuin) gene in a model of diet-induced obesity.  Life Sci. 1998;  63 145-153
  • 110 Mori K, Emoto M, Yokoyama H, Araki T, Teramura M, Koyama H, Shoji T, Inaba M, Nishizawa Y. Association of serum fetuin-A with insulin resistance in type 2 diabetic and nondiabetic subjects.  Diabetes Care. 2006;  29 468
  • 111 Ix J H, Shlipak M G, Brandenburg V M, Ali S, Ketteler M, Whooley M A. Association between human fetuin-A and the metabolic syndrome: data from the Heart and Soul Study.  Circulation. 2006;  113 1760-1767
  • 112 Hennige A M, Staiger H, Wicke C, Machicao F, Fritsche A, Häring H U, Stefan N. Fetuin-A Induces cytokine expression and suppresses adiponectin production.  PlOS ONE. 2008;  ,  (in press)
  • 113 Blaner W S. Retinol-binding protein: the serum transport protein for vitamin A.  Endocr Rev. 1989;  10 308-316
  • 114 Yang Q, Graham T E, Mody N, Preitner F, Peroni O D, Zabolotny J M, Kotani K, Quadro L, Kahn B B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes.  Nature. 2005;  436 356-362
  • 115 Graham T E, Yang Q, Bluher M, Hammarstedt A, Ciaraldi T P, Henry R R, Wason C J, Oberbach A, Jansson P A, Smith U, Kahn B B. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects.  N Engl J Med. 2006;  354 2552-2563
  • 116 Kloting N, Graham T E, Berndt J, Kralisch S, Kovacs P, Wason C J, Fasshauer M, Schon M R, Stumvoll M, Bluher M, Kahn B B. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass.  Cell Metab. 2007;  6 79-87
  • 117 Stefan N, Hennige A M, Staiger H, Machann J, Schick F, Schleicher E, Fritsche A, Haring H U. High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans.  Diabetes Care. 2007;  30 1173-1178
  • 118 Balagopal P, Graham T E, Kahn B B, Altomare A, Funanage V, George D. Reduction of elevated serum retinol binding protein in obese children by lifestyle intervention: association with subclinical inflammation.  J Clin Endocrinol Metab. 2007;  92 1971-1974
  • 119 Lee D C, Lee J W, Im J A. Association of serum retinol binding protein 4 and insulin resistance in apparently healthy adolescents.  Metabolism. 2007;  56 327-331
  • 120 Gavi S, Stuart L M, Kelly P, Melendez M M, Mynarcik D C, Gelato M C, McNurlan M A. Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in nonobese subjects without type 2 diabetes.  J Clin Endocrinol Metab. 2007;  92 1886-1890
  • 121 Schafer S, Kantartzis K, Machann J, Venter C, Niess A, Schick F, Machicao F, Haring H U, Fritsche A, Stefan N. Lifestyle intervention in individuals with normal versus impaired glucose tolerance.  Eur J Clin Invest. 2007;  37 535-543
  • 122 Harrison S A, Day C P. Benefits of lifestyle modification in NAFLD.  Gut. 2007;  56 1760-1769
  • 123 Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Batkai S, Harvey-White J, Mackie K, Offertaler L, Wang L, Kunos G. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity.  J Clin Invest. 2005;  115 1298-1305
  • 124 Despres J P, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia.  N Engl J Med. 2005;  353 2121-2134

PD Dr. med. N. Stefan

Universitätsklinik Tübingen · Innere Medizin · Abteilung für Endokrinologie, Diabetologie, Angiologie, Nephrologie und Klinische Chemie

Otfried-Müller-Str. 10

72076 Tübingen

Phone: +49 / 70 71 / 2 98 03 90

Fax: +49 / 70 71 / 29 59 74

Email: norbert.stefan@med.uni-tuebingen.de

    >