Rofo 2008; 180(9): 821-831
DOI: 10.1055/s-2008-1027669
Experimental Radiology

© Georg Thieme Verlag KG Stuttgart · New York

Multi-Detector Computed Tomography to Analyze In-Stent Restenoses at Different Heart Rates

Multidetektor-Computertomografie zur Analyse von In-Stent-Restenosen bei verschiedenen HerzfrequenzenR. Köster1 , U. van Stevendaal2 , M. Grass2 , J. Yamamura3 , J. Kaehler1 , G. Adam3 , T. Meinertz1 , P. G. Begemann3
  • 1Klinik und Poliklinik für Kardiologie und Angiologie, Universitäres Herzzentrum Hamburg
  • 2Research Sector Medical Imaging Systems, Philips Research Hamburg
  • 3Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Hamburg-Eppendorf
Further Information

Publication History

received: 27.1.2008

accepted: 11.6.2008

Publication Date:
08 August 2008 (online)

Zusammenfassung

Ziel: Mit dieser Studie wurde die Darstellbarkeit von koronaren In-Stent-Restenosen mittels Multidetektor-Computertomografie (MDCT) untersucht. Material und Methoden: Es wurde ein Restenosephantom mit verschiedenen Stent-versorgten Stenosen benutzt. Dieses Phantom wurde an ein dynamisches Herzphantom gekoppelt, das sich mit Herzfrequenzen von 40 – 120 /min bewegte. Die MDCT wurde mit zwei Scan-Protokollen durchgeführt: ein Standardprotokoll und ein ultrahochauflösendes Protokoll. Ergebnisse: Bei Benutzung des ultrahochauflösenden Protokolls waren Artefakte bis 0,6 mm um die Stentstreben herum nachweisbar (p < 0,001). Die Artefakte beeinträchtigten die Unterscheidung zwischen keiner Stenose und einer niedriggradigen Stenose. Etwa 73 % des zentralen Lumen-Diameters konnte ohne limitierende Artefakte beurteilt werden, sodass die Unterscheidung zwischen keiner oder niedriggradiger und mittel- sowie hochgradiger Stenose gut möglich war (p < 0,05). Wurde das Standardprotokoll im dynamischen Phantom benutzt, verminderte sich die Bildqualität und die Darstellbarkeit der Stenosen mit steigenden Herzfrequenzen (p < 0,0002 und p < 0,004). Dies konnte durch eine Analyse in einem optimalen RR-Intervall kompensiert werden. Im optimalen RR-Intervall war eine Beurteilung des Grades der Stenosen oberhalb von 30 % und bis zu einer Herzfrequenz von 120 /min möglich. Schlussfolgerung: Die Multidetektor-Computertomografie mit ultrahochauflösenden Scan-Protokollen ermöglicht die Beurteilung eines weiten Bereichs von In-Stent-Restenosen. Unter diesen experimentellen Bedingungen erlaubten die Standardprotokolle eine Unterscheidung von niedrig-, mittel- und hochgradigen Stenosen sogar bei Herzfrequenzen über 100 /min.

Abstract

Purpose: This study was performed to evaluate the visualization of coronary in-stent restenosis by multi-detector computed tomography (MDCT). Materials and Methods: A restenosis phantom with different stented stenoses was used. The phantom was placed into a dynamic heart phantom with heart rates from 40 to 120 bpm. MDCT was performed with two scan protocols: a standard and an ultra-high resolution scan protocol. Results: Using the ultra-high resolution protocol, artifacts occurred at 0.6 mm around the stent struts (p < 0.001). Artifacts compromised the discrimination between no stenosis and low-grade stenosis. Approximately 73 % of the central lumen diameter was able to be assessed without limiting artifacts allowing the discrimination of no or low vs. moderate and high-grade stenoses (p < 0.05). Using the standard protocol in the dynamic phantom, the image quality and visibility of stenoses decreased with an increasing heart rate (p < 0.0002 and p < 0.004). This was able to be compensated by analysis in an appropriate RR-interval. At the optimal RR-interval, an assessment of the grade of stenoses > 30 % was feasible up to 120 bpm. Conclusion: Multi-detector computed tomography ultra-high resolution scans allowed the assessment of a wide range of degrees of in-stent restenoses. In this experimental setup, standard protocols allowed a discrimination of low, moderate and high-grade stenoses even at heart rates above 100 bpm.

References

  • 1 Stein P D, Beemath A, Kayali F. et al . Multidetector computed tomography for the diagnosis of coronary artery disease: a systematic review.  Am J Med. 2006;  119 203-216
  • 2 Dewey M, Hamm B. CT coronary angiography: examination technique, clinical results, and outlook on future developments.  Fortschr Röntgenstr. 2007;  179 246-260
  • 3 Soon K H, Kelly A M, Cox N. et al . Non-invasive multislice computed tomography coronary angiography for imaging coronary arteries, stents and bypass grafts.  Intern Med J. 2006;  36 43-50
  • 4 Budoff M J, Achenbach S, Blumenthal R S. et al . Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology.  Circulation. 2006;  114 1761-1791
  • 5 Achenbach S, Ulzheimer S, Baum U. et al . Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT.  Circulation. 2000;  102 2823-2828
  • 6 Achenbach S, Ropers D, Kuettner A. et al . Contrast-enhanced coronary artery visualization by dual-source computed tomography – initial experience.  Eur J Radiol. 2006;  57 331-335
  • 7 Manzke R, Kohler T, Nielsen T. et al . Automatic phase determination for retrospectively gated cardiac CT.  Med Phys. 2004;  31 3345-3362
  • 8 Funabashi N, Komiyama N, Komuro I. Patency of coronary artery lumen surrounded by metallic stent evaluated by three dimensional volume rendering images using ECG gated multislice computed tomography.  Heart. 2003;  89 388
  • 9 Maintz D, Juergens K U, Wichter T. et al . Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation.  Eur Radiol. 2003;  13 830-835
  • 10 Mahnken A H, Buecker A, Wildberger J E. et al . Coronary artery stents in multislice computed tomography: in vitro artifact evaluation.  Invest Radiol. 2004;  39 27-33
  • 11 Maintz D, Grude M, Fallenberg E M. et al . Assessment of coronary artery stents by multislice CT angiography.  Acta Radiol. 2003;  44 597-603
  • 12 Mahnken A H, Seyfarth T, Flohr T. et al . Flat-panel detector comuted tomography for the assessment of coronary artery stents.  Invest Radiol. 2005;  40 8-13
  • 13 Gilard M, Cornily J C, Pennec P Y. et al . Assessment of coronary artery stents by 16 slice comuted tomography.  Heart. 2006;  92 58-61
  • 14 Schuijf J D, Bax J J, Jukema W. et al . Feasibility of assessment of coronary stent patency using 16 slice computed tomography.  Am J Cardiol. 2004;  94 427-30
  • 15 Maintz D, Seifarth H, Flohr T. et al . Improved coronary artery stents visualization and in-stent restenosis detection using 16-slice computed tomography and dedicated image reconstruction technique.  Invest Radiol. 2003;  38 790-795
  • 16 Mahnken A H, Buecker A, Wildberger J E. et al . Coronary artery stents in multislice computed tomography: in vitro artifact evaluation.  Invest Radiol. 2004;  39 27-33
  • 17 Achenbach S, Giesler T, Ropers D. et al . Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography.  Circulation. 2001;  103 2535-2538
  • 18 Sediono W, Dossel O. Elastomechanics of the ventricles: development of a phantom and results of simulation.  Biomed Tech. 2002;  47 243-245
  • 19 Begemann P G, Stevendaal van U, Manzke R. et al . Evaluation of spatial and temporal resolution for ECG-gated 16-row multidetector CT using a dynamic cardiac phantom.  Eur Radiol. 2005;  15 1015-1026
  • 20 Timinger H. Motion compensated navigation on virtual static roadmaps for coronary intervention. Berlin; Logos 2005: 1-153
  • 21 Van Stevendaal U, Koken P, Begemann P GC. et al . ECG gated continuous circular cone-beam multi-cycle reconstruction for in-stent coronary artery imaging: a phantom study.  Proceedings of SPIE. 2006;  DOI: 61420L-1-61 420-10
  • 22 Yamamura J, Stevendaal van U, Köster R. et al . Experimental 16 row CT evaluation of in-stent restenosis using new static and moving cardiac stent phantoms. Experimental examination.  Fortschr Röntgenstr. 2006;  178 1079-1085
  • 23 Grass M, Manzke R, Nielsen T. et al . Helical cardiac cone beam reconstruction using retrospective ECG gating.  Phys Med Biol. 2003;  48 3069-3084
  • 24 Manzke R, Grass M, Nielsen T. et al . Adaptive temporal resolution optimization in helical cardiac cone beam CT reconstruction.  Med Phys. 2003;  30 3072-3080
  • 25 Serruys P W, Kutryk M J, Ong A T. Coronary artery stents.  N Engl J Med. 2006;  354 483-495
  • 26 Maintz D, Seifarth H, Raupach R. et al . 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents.  Eur Radiol. 2006;  16 818-826
  • 27 Flohr T, Stierstorfer K, Raupach R. et al . Performance of a 64-slice CT system with z-flying focal spot.  Fortschr Röntgenstr. 2004;  176 1803-1810
  • 28 Krüger S, Mahnken A H, Sinha A M. et al . Multislice spiral computed tomography for the detection of coronary stent restenosis and patency.  Int J Cardiol. 2003;  89 167-172
  • 29 Gaspar T, Halon D A, Lewis B S. et al . Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography.  J Am Coll Cardiol. 2005;  46 1573-1579
  • 30 Mahnken A H, Mühlenbruch G, Seyfarth T. et al . 64-slice computed tomography assessment of coronary artery stents. A phantom study.  Acta Radiologica. 2006;  47 36-42
  • 31 Rixe J, Achenbach S, Ropers D. et al . Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography.  Eur Heart J. 2006;  27 2567-2572
  • 32 Niemann K, Rensing B J, Geuns R J. et al . Non-invasive coronary angiography with multisclice spiral computed tomography: impact of heart rate.  Heart. 2002;  88 470-474
  • 33 Cademartiri van F, Runza G, Mollet N R. et al . Impact of intravascular enhancement, heart rate, and calcium score on diagnostic accuracy in multislice computed tomography coronary angiography.  Radiol Med. 2005;  110 42-51
  • 34 Hoffmann M, Lessick J, Manzke R. et al . Automatic determination of minimal cardiac motion phases for computed tomography imaging: initial experience.  Eur Radiol. 2006;  16 365-373
  • 35 Seifarth H, Ozgun M, Raupach R. et al . 64- versus 16-slice CT angiography for coronary artery stents assessment: in vitro experience.  Invest Radiol. 2006;  41 22-27
  • 36 Schiele T M. Current understanding of coronary in-stent restenosis. Pathophysiology, clinical presentation, diagnostic work-up, and management.  Z Kardiol. 2005;  94 772-790

Dr. Ralf Köster

Klinik und Poliklinik für Kardiologie und Angiologie, Universitäres Herzzentrum Hamburg

Martinistraße 52

20246 Hamburg

Phone: ++ 49/40/4 28 03 75 07

Fax: ++ 49/40/4 28 03 29 67

Email: rkoester@uke.uni-hamburg.de

    >