References and Notes
For reviews, see:
<A NAME="RU10007ST-1A">1a</A>
Otera J.
Chem. Rev.
1993,
93:
1449
<A NAME="RU10007ST-1B">1b</A>
Otera J.
Esterification Methods, Reactions, and Applications
Wiley-VCH;
Weinheim:
2003.
<A NAME="RU10007ST-2">2</A>
Taber DF.
Amedio JC.
Patel YK.
J. Org. Chem.
1985,
50:
3618
<A NAME="RU10007ST-3">3</A>
Yadav JS.
Reddy BVS.
Krishna AD.
Reddy CS.
Narsaiah AV.
J. Mol. Catal. A: Chem.
2007,
261:
93
<A NAME="RU10007ST-4A">4a</A>
Otera J.
Yano T.
Kawabata A.
Nozaki H.
Tetrahedron Lett.
1986,
27:
2383
<A NAME="RU10007ST-4B">4b</A>
Otera J.
Dan-oh N.
Nozaki H.
J. Org. Chem.
1991,
56:
5307
<A NAME="RU10007ST-5">5</A>
Bandgar BP.
Uppalla LS.
Sadavarte VS.
Synlett
2001,
1715
For recent leading references, see:
<A NAME="RU10007ST-6A">6a</A> I2:
Chavan SP.
Kale RR.
Shivasankar K.
Chandake SI.
Benjamin SB.
Synthesis
2003,
2695
<A NAME="RU10007ST-6B">6b</A> 3-Nitrobenzeneboronic acid:
Tale RH.
Sagar AD.
Santan HD.
Adude RN.
Synlett
2006,
415
<A NAME="RU10007ST-6C">6c</A> Hexamethylenetetramine:
Ribeiro RS.
de Souza ROMA.
Vasconcellos MLAA.
Oliveira BL.
Ferreira LC.
Aguiar LCS.
Synthesis
2007,
61 ; and references cited therein
<A NAME="RU10007ST-7">7</A>
Anastas PT.
Warner JC.
Green Chemistry: Theory and Practice
Oxford University Press;
Oxford:
1998.
<A NAME="RU10007ST-8">8</A>
Chavan SP.
Subbarao YT.
Dantale SW.
Sivappa R.
Synth. Commun.
2001,
31:
289
<A NAME="RU10007ST-9">9</A>
Hagiwara H.
Koseki A.
Isobe K.
Shimizu K.
Hoshi T.
Suzuki T.
Synlett
2004,
2188
<A NAME="RU10007ST-10A">10a</A>
Bandgar BP.
Uppalla LS.
Sadavarte VS.
Green Chem.
2001,
3:
39
<A NAME="RU10007ST-10B">10b</A>
da Silva FC.
Ferreira VF.
Rianelli RS.
Perreira WC.
Tetrahedron Lett.
2002,
43:
1165
<A NAME="RU10007ST-10C">10c</A>
Jin T.
Zhang S.
Li T.
Green Chem.
2002,
4:
32
<A NAME="RU10007ST-11">11</A>
De Sairre MI.
Bronze-Uhle ES.
Donate PM.
Tetrahedron Lett.
2005,
46:
2705
For recent leading references, see:
<A NAME="RU10007ST-12A">12a</A> LiClO4:
Bandgar BP.
Sadavarte VS.
Uppalla LS.
Synlett
2001,
1338
<A NAME="RU10007ST-12B">12b</A> NaBO3:
Bandgar BP.
Sadavarte VS.
Uppalla LS.
Chem. Lett.
2001,
30:
894
<A NAME="RU10007ST-12C">12c</A> FeSO4:
Bandgar BP.
Sadavarte VS.
Uppalla LS.
Synth. Commun.
2001,
31:
2063
Zn:
<A NAME="RU10007ST-12D">12d</A>
Chavan SP.
Shivasankar K.
Sivappa R.
Kale R.
Tetrahedron Lett.
2002,
43:
8583
<A NAME="RU10007ST-12E">12e</A>
Bandgar BP.
Sadavarte VS.
Uppalla LS.
J. Chem. Res., Synop.
2001,
16
<A NAME="RU10007ST-12F">12f</A> ZnSO4:
Bandgar BP.
Pandit SS.
Uppalla LS.
Org. Prep. Proced. Int.
2003,
35:
219
<A NAME="RU10007ST-12G">12g</A> Polymer-supported lipase:
Cordova A.
Janda KD.
J. Org. Chem.
2001,
66:
1906
<A NAME="RU10007ST-12H">12h</A> Yttria-zirconia:
Kumar P.
Pandey RK.
Synlett
2000,
251
<A NAME="RU10007ST-13A">13a</A>
Sato T.
Yoshimatsu K.
Otera J.
Synlett
1995,
845
<A NAME="RU10007ST-13B">13b</A>
Sato T.
Otera J.
Synlett
1995,
336
<A NAME="RU10007ST-13C">13c</A>
Sato T.
Otera J.
J. Org. Chem.
1995,
60:
2627
<A NAME="RU10007ST-14">14</A>
To the best of our knowledge, there is only one successful report4 on the use of this type compound in the transesterification process.
<A NAME="RU10007ST-15">15</A>
CsF was the best catalyst among the cesium salts examined under the identical conditions:
CsCl (1%), CsBr (2%), CsI (2%).
Transesterification of β-keto esters with allylic alcohols is rather difficult as
it is offset by facile decarboxylative rearrangement:
<A NAME="RU10007ST-16A">16a</A>
Carrol MF.
J. Chem. Soc.
1940,
704
<A NAME="RU10007ST-16B">16b</A>
Kimel W.
Cope AC.
J. Am. Chem. Soc.
1943,
65:
1992
<A NAME="RU10007ST-17">17</A> Conventional acid- and base-catalyzed transesterification of β-keto esters with
propargylic alcohols provided in most cases low yields of the products:
Mottet C.
Hamelin O.
Garavel G.
Depres J.-P.
Greene AE.
J. Org. Chem.
1999,
64:
1380 ; and references cited therein
<A NAME="RU10007ST-18">18</A> Cesium fluoride promoted desilylation of tert-butyldimethylsilyl ethers was reported:
Cirillo PF.
Panek JS.
J. Org. Chem.
1990,
55:
6071
<A NAME="RU10007ST-19">19</A>
Transesterification of normal esters proceeded under similar reaction conditions.
The details of this result will be communicated later.
<A NAME="RU10007ST-20">20</A>
Typical Procedure (Table 1, entry 1): In a 65-mL test tube (2.0 × 19 cm) fitted with a Drierite drying tube, a vigorously
stirred mixture of methyl acetoacetate (581 mg, 5.0 mmol), 1-octanol (846 mg, 6.5
mmol) and CsF21 (76 mg, 0.5 mmol) in commercial toluene without any purification (10 mL) was heated
so that the toluene refluxed halfway up the tube (130-135 °C, bath temperature) for
18 h.22 After toluene had been decanted, CsF was washed with Et2O (5 mL). The combined organic layer was evaporated under reduced pressure. The residue
was chromatographed on silica gel (5% EtOAc-hexane) to afford octyl acetoacetate (997
mg, 93%).23 CsF remained intact and was reused for the subsequent reaction.
<A NAME="RU10007ST-21">21</A>
Purchased from Mitsuwa Chemicals Co., Ltd.
<A NAME="RU10007ST-22">22</A>
The equilibrium was shifted due to the loss of the relatively volatile methyl, ethyl
or isopropyl alcohol from the reaction mixture.
<A NAME="RU10007ST-23">23</A>
Selected spectroscopic data:
Octyl 2,2-Dimethyl-3-oxobutyrate: 1H NMR (CDCl3): δ = 0.88 (t, J = 7.5 Hz, 3 H), 1.22-1.66 (m, 12 H), 1.36 (s, 6 H), 2.16 (s, 3 H), 4.12 (t, J = 7.0 Hz, 2 H). 13C NMR (CDCl3): δ = 13.9, 21.7, 22.5, 25.5, 25.7, 28.3, 29.0, 31.6, 55.6, 65.3, 173.5, 205.6.
2-Heptynyl 3-Oxohexanoate: 1H NMR (CDCl3): δ = 0.91 (t, J = 7.5 Hz, 3 H), 0.93 (t, J = 7.5 Hz, 3 H), 1.36-1.44 (m, 2 H), 1.46-1.53 (m, 2 H), 1.59-1.67 (m, 2 H), 2.22
(tt, J = 2.5, 7.5 Hz, 2 H), 2.53 (t, J = 7.5 Hz, 2 H), 3.47 (s, 2 H), 4.72 (t, J = 2.5 Hz, 2 H). 13C NMR (CDCl3): δ = 13.4, 16.8, 18.3, 21.8, 30.3, 44.7, 48.9, 53.5, 73.3, 88.0, 166.5, 202.1.
8-Oxiranyloctyl 3-Oxohexanoate: 1H NMR (CDCl3): δ = 0.93 (t, J = 7.5 Hz, 3 H), 1.25-1.69 (m, 16 H), 2.47 (dd, J = 3.5, 5.0 Hz, 1 H), 2.52 (t, J = 7.5 Hz, 2 H), 2.75 (app t, J = 4.5 Hz, 1 H), 2.88-2.94 (m, 1 H), 3.43 (s, 2 H), 4.13 (t, J = 6.5 Hz, 2 H). 13C NMR (CDCl3): δ = 13.4, 16.8, 25.6, 25.8, 28.3, 28.9, 29.1, 29.2, 32.3, 44.7, 46.9, 49.1, 52.2,
65.3, 167.2, 202.6.
2-(Dimethylamino)ethyl 3-Oxohexanoate: 1H NMR (CDCl3): δ = 0.93 (t, J = 7.0 Hz, 3 H), 1.58-1.68 (m, 2 H), 2.28 (s, 6 H), 2.52 (t, J = 7.0 Hz, 2 H), 2.58 (t, J = 5.5 Hz, 2 H), 3.47 (s, 2 H), 4.24 (t, J = 5.5 Hz, 2 H). 13C NMR (CDCl3): δ = 13.3, 16.7, 44.7, 45.4, 49.0, 57.4, 62.6, 167.1, 202.6.
6-Chlorohexyl 3-Oxohexanoate: 1H NMR (CDCl3): δ = 0.93 (t, J = 7.5 Hz, 3 H), 1.35-1.82 (m, 10 H), 2.52 (t, J = 7.5 Hz, 2 H), 3.43 (s, 2 H), 3.54 (t, J = 6.5 Hz, 2 H), 4.14 (t, J = 7.0 Hz, 2 H). 13C NMR (CDCl3): δ = 13.4, 16.8, 25.0, 26.3, 28.2, 32.2, 44.7, 49.1, 65.0, 167.1, 202.6.