Int J Sports Med 2008; 29(9): 746-752
DOI: 10.1055/s-2008-1038375
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Cadence and Workload Effects on Pedaling Technique of Well-Trained Cyclists

M. Rossato1 , 2 , R. R. Bini1 , F. P. Carpes1 , F. Diefenthaeler1 , A. R. P. Moro2
  • 1Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
  • 2Laboratório de Biomecânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
Further Information

Publication History

accepted after revision January 9, 2008

Publication Date:
26 February 2008 (online)

Abstract

This study investigated the effects of changing cadence and workload on pedaling technique. Eight cyclists were evaluated during an incremental maximal cycling and two 30-minute submaximal trials at 60 % and 80 % of maximal power output (W60 % and W80 %, respectively). During submaximal 30-minute trials, they cycled for 10 minutes at a freely chosen cadence (FCC), 10 minutes at a cadence 20 % above FCC (FCC + 20 %), and 10 minutes at a cadence 20 % below FCC (FCC − 20 %). Pedal forces and kinematics were evaluated. The resultant force (RF), effective force (EF), index of effectiveness (IE) and IE during propulsive and recovery phase (IEprop and IErec, respectively) were computed. For W60 %, FCC − 20 % and FCC presented higher EFmean (69 ± 9 N and 66 ± 14 N, respectively) than FCC + 20 % (52 ± 14 N). FCC presented the highest IEprop (81 ± 4 %) among the cadences (74 ± 4 and 78 ± 5 % for FCC − 20 % and FCC + 20 %, respectively). For W80 %, FCC presented higher EFmean (81 ± 5 N) than FCC + 20 % (72 ± 10 N). The FCC − 20 % presented the lower IEprop (71 ± 7 %) among the cadences. The EFmin was higher for W80 % than W60 % for all cadences. The IE was higher at W80 % (61 ± 5 %) than W60 % (54 ± 9 %) for FCC + 20 % (all p < 0.05). Lower cadences were more effective during the recovery phase for both intensities and FCC was the best technique during the propulsive phase.

References

  • 1 Black A H, Sanderson D J, Hennig E M. Kinematics and kinetics changes during an incremental exercise test on a bicycling ergometer. In: XIVth I.S.B Congress in Biomechanics. Paris, France. 1993: 186-187
  • 2 Burke E R. High-tech Cycling. Colorado Springs; Human Kinetics 1996
  • 3 Candotti C T, Soares D P, Fraga C, Vellado D, Rocha E, Ribeiro J, Loss J F, Guimarães A C. Análise da técnica da pedalada de ciclistas de elite. X Congresso Brasileiro de Biomecânica. 2003: 152-155
  • 4 Chapman A R, Vicenzino B, Blanch P, Knox J J, Hodges P W. Leg muscle recruitment in highly trained cyclists.  J Sports Sci. 2006;  47 115-124
  • 5 Coyle E F, Feltner M E, Kautz S A, Hamilton M T, Montain S J, Baylor A M, Abraham L D, Petrek G W. Physiological and biomechanical factors associated with elite endurance cycling performance.  Med Sci Sports Exerc. 1991;  23 93-107
  • 6 Davis R R, Hull M L. Measurement of pedal loading in bicycling: 2 – analysis and results.  J Biomech. 1981;  14 857-872
  • 7 Di Prampero P E. Cycling on earth, in space, on the moon.  Eur J Appl Physiol. 2000;  82 345-360
  • 8 Diefenthaeler F, Bini R R, Laitano O L, Guimarães A CS, Nabinger E, Carpes F P, Bolli C M, Guimarães A C. Assessment of the effects of saddle position on cyclists' pedaling technique.  Med Sci Sports Exerc. 2006;  38 S181
  • 9 Ericson M O, Nissel R. Efficiency of pedal forces during ergometer cycling.  Int J Sports Med. 1988;  9 118-122
  • 10 Gotshall R W, Bauer T A, Fahrner S L. Cycling cadence alters exercise hemodynamics.  Int J Sports Med. 1996;  17 17-21
  • 11 Gregor R J, Broker J P, Ryan M S. The biomechanics of cycling.  Exerc Sports Sci Rev. 1991;  19 127-169
  • 12 Hansen E A, Andersen J L, Nielsen J S, Sjogaard G. Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling.  Acta Physiol Scand. 2002;  176 185-194
  • 13 Hansen E A, Jensen K, Pedersen P K. Performance following prolonged sub-maximal cycling at optimal versus freely chosen pedal rate.  Eur J Appl Physiol. 2006;  98 227-233
  • 14 Harnish C, King D, Swensen D. Effect of cycling position on oxygen uptake and preferred cadence in trained cyclists during hill climbing at various power outputs.  Eur J Appl Physiol. 2007;  99 387-390
  • 15 Hill A V. The heat of shortening and the dynamic constants of muscle.  Proc R Soc Lon. 1938;  126 136-195
  • 16 Kautz S A, Hull M L. A theoretical basis for interpreting the force applied to the pedal in cycling.  J Biomech. 1993;  26 155-165
  • 17 Kautz S A, Feltner M E, Coyle E F, Baylor A M. The pedaling technique of elite endurance cyclists: changes with increasing workload at constant cadence.  Int J Sport Biomech. 1991;  7 29-53
  • 18 Kohler G, Boutellier U. The generalized force–velocity relationship explains why the preferred pedaling rate of cyclists exceeds the most efficient one.  Eur J Appl Physiol. 2005;  94 188-195
  • 19 Korff T, Romer L M, Mayhew I, Martin J C. Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists.  Med Sci Sports Exerc. 2007;  39 991-995
  • 20 Kuipers H, Verstappen F TJ, Keizer H A. Variability of aerobic performance in the laboratory and its physiological correlates.  Int J Sports Med. 1985;  6 197-200
  • 21 Lafortune M A, Cavanagh P R. Effectiveness and efficiency during bicycle riding. Matsui H, Kobashi K Biomechanics VIII‐B. Champaign, Il; Human Kinetics 1983: 928-936
  • 22 Lepers R, Millet G Y, Maffiuletti N A. Effect of cycling cadence on contractile and neural properties of knee extensors.  Med Sci Sports Exerc. 2001;  33 1882-1888
  • 23 Lucía A, Hoyos J, Chicharro J L. Preferred pedaling cadence in professional cycling.  Med Sci Sports Exerc. 2001;  33 1361-1366
  • 24 Macintosh B R, Neptune R R, Horton J F. Cadence, power, and muscle activation in cycle ergometry.  Med Sci Sports Exerc. 2000;  32 1281-1287
  • 25 Marsh A P, Martin P E, Foley K O. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling.  Med Sci Sports Exerc. 2000;  32 1630-1634
  • 26 Mora-Rodrigues R, Aguado-Jimenez R. Performance at high pedaling cadences in well-trained cyclists.  Med Sci Sports Exerc. 2006;  38 953-957
  • 27 Mornieux G, Zameziati K, Rouffet D, Stapelfeldt B, Belli A. Influence of pedaling effectiveness on the inter-individual variations of muscular efficiency in cycling.  Isok Exerc Sci. 2005;  13 1-8
  • 28 Neptune R R, Hull M L. A theoretical analysis of preferred pedaling rate selection in endurance cycling.  J Biomech. 1999;  32 409-415
  • 29 Nesi X, Bosquet L, Pelayo P. Preferred pedal rate: an index of cycling performance.  Int J Sports Med. 2005;  26 372-375
  • 30 Neto C D, Schimidt G, Candotti C T, Loss J F, Zaro M A, Cervieri A, Guimarães A CS. Desenvolvimento de uma plataforma de força em pedal de ciclismo.  Braz J Biomech. 2001;  3 39-44
  • 31 Nielsen J S, Hansen E A, Sjogaard G. Pedaling rate affects endurance performance during high-intensity cycling.  Eur J Appl Physiol. 2004;  92 114-120
  • 32 Patterson R P, Moreno M I. Bicycle pedaling forces as a function of pedaling rate and power output.  Med Sci Sports Exerc. 1990;  22 512-516
  • 33 Rassier D, Macintosh B R, Herzog W. Length dependence of active force production in skeletal muscle.  J Appl Physiol. 1999;  86 1445-1457
  • 34 Reiser R F, Peterson M L, Broker J P. Influence of hip orientation on Wingate power output and cycling technique.  J Strength Cond Res. 2000;  16 556-560
  • 35 Sanderson D J, Black A. The effect of prolonged cycling on pedal forces.  J Sports Sci. 2003;  21 191-199
  • 36 Sanderson D J, Hennig E M, Black A H. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.  J Sports Sci. 2000;  18 173-181
  • 37 Sanderson D J. The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists.  J Sports Sci. 1991;  9 191-203
  • 38 Sargeant A J. Structural and functional determinants of human muscle power.  Exp Physiol. 2007;  92 323-331
  • 39 Sarre G, Lepers R, Hoecke J V. Stability of pedaling mechanics during a prolonged cycling exercise performed at different cadences.  J Sports Sci. 2005;  23 693-701
  • 40 Sarre G, Lepers R, Maffiuletti N, Millet G, Martin A. Influence of cycling cadence on neuromuscular activity of the knee extensors in humans.  Eur J Appl Physiol. 2003;  88 476-479
  • 41 Soares D, Rocha E, Candotti C, Guimarães A CS, Loss J. Caracterização da escolha da cadência preferida a partir de parâmetros biomecânicos e fisiológicos. XI Congresso Brasileiro de Biomecânica. 2005
  • 42 Takaishi T, Yamamoto T, Ono T, Ito T, Moritani T. Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists.  Med Sci Sports Exerc. 1998;  30 442-449
  • 43 Takaishi T, Yasuda Y, Moritani T. Neuromuscular fatigue during prolonged pedaling rates.  Eur J Appl Physiol. 1994;  69 154-158
  • 44 Takaishi T, Yasuda Y, Ono T. Optimal pedaling rate estimated from neuromuscular fatigue for cyclists.  Med Sci Sports Exerc. 1996;  28 1492-1497
  • 45 Widrick J J, Freedson P S, Hamill J. Effect of internal work on the calculation of optimal pedaling rates.  Med Sci Sports Exerc. 1992;  24 376-382
  • 46 Zameziati K, Mornieux G, Rouffet D, Belli A. Relationship between the increase of effectiveness indexes and the increase of muscular efficiency with cycling power.  Eur J Appl Physiol. 2006;  96 274-281

Felipe Pivetta Carpes

Universidade Federal do Rio Grande do Sul
Escola de Educação Física – Laboratório de Pesquisa do Exercício

Felizardo 750

90690-200 Porto Alegre

Brazil

Phone: + 55 51 33 08 58 59

Fax: + 55 51 33 08 58 42

Email: felipecarpes@gmail.com

    >