Horm Metab Res 2008; 40(6): 416-421
DOI: 10.1055/s-2008-1073151
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Circulating Chemokines in Patients with Autoimmune Thyroid Diseases

J. Domberg 1 [*] , L. Chao 1 , 2 [*] , C. Papewalis 1 , C. Pfleger 3 , K. Xu 2 , H. S. Willenberg 1 , D. Hermsen 4 , W. A. Scherbaum 1 , N. C. Schloot 3 , M. Schott 1
  • 1Department of Endocrinology, Diabetes and Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
  • 2Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
  • 3Institute for Clinical Diabetes Research, German Diabetes Centre, Leibniz-Institute at the Heinrich-Heine University, Düsseldorf, Germany
  • 4Institute of Clinical Chemistry and Laboratory Medicine
Further Information

Publication History

received 11.01.2008

accepted 25.02.2008

Publication Date:
14 April 2008 (online)

Abstract

Chemokines are a group of small proteins that recruit different leukocyte subtypes to sites of inflammation and play important roles in initiating and maintaining immunological responses in autoimmune endocrine diseases including Graves’ disease (GD) and Hashimoto's thyroiditis (HT). Previous studies have found increased gene and protein expression of different kinds of chemokines not only within the thyroid gland but also within thyroid cells in GD or HT patients. A few studies have determined serum levels of chemokines, with conflicting results. We measured circulating concentrations of CCL2, CCL5, CXCL9, and CXCL10 in patients with GD, HT, and nontoxic nodular thyroid disease (NNT). While CCL2 and CXCL9 concentrations were comparable in patients with either AITD or NNT, CCL5 was significantly increased in GD patients compared with HT or NNT subjects. In contrast, CXCL10 levels were lower in patients with GD, but the difference was statistically significant only when compared with patients with HT (p=0.0018). Importantly, GD patients who relapsed or went into remission had significantly different levels of CXCL9 (p=0.0252). Serum levels of CCL2, CCL5, CXCL9, and CXCL10 did not reveal any correlation with thyroid volume; with the levels of thyrotropin (TSH), FT3, or FT4; or with the titers of TSH receptor antibody and thyroperoxidase antibody. These data suggest that the expression patterns of chemokines in various thyroid diseases differ from each other, which may reflect the distinct immune responses in HT and GD.

References

  • 1 Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation.  N Engl J Med. 2006;  354 610-621
  • 2 Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution.  Genome Biol. 2006;  7 243
  • 3 Kimura1 H, Caturegli P. Chemokine orchestration of autoimmune thyroiditis.  Thyroid. 2007;  17 1005-1010
  • 4 Rotondi M, Chiovato L, Romagnani S, Serio M, Romagnani P. Role of chemokines in endocrine autoimmune diseases.  Endocr Rev. 2007;  28 492-520
  • 5 Yudkin JS. Inflammation, obesity and the metabolic syndrome.  Horm Metab Res. 2007;  39 707-797
  • 6 Seifarth C, Mack M, Steinlicht S, Hahn EG, Lohmann T. Transient chemokine receptore blockade does not prevent, but may accelerated type 1 diabetes in prediabetic NOD mice.  Horm Metab Res. 2006;  38 167-171
  • 7 Ruffini PA, Morandi P, Cabioglu N, Altundag K, Cristofanilli M. Manipulating the chemokine-chemokine receptor network to treat cancer.  Cancer. 2007;  109 2392-2404
  • 8 Muller A, Rotondi M, Lazzeri E, Romagnani P, Serio M. Role for interferon-γ inducible chemokines in endocrine autoimmunity: an expanding field.  J Endocrinol Invest. 2003;  26 177-180
  • 9 Nicoletti F, Conget I, Mauro M Di, Marco R Di, Mazzarino MC, Bendtzen K, Messina A, Gomis R. Serum concentrations of the interferon-γ-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed type I diabetes mellitus patients and subjects at risk of developing the disease.  Diabetologia. 2002;  45 1107-1110
  • 10 Ferrante  Jr  AW. Obesity-induce inflammation: a metabolic dialogue in the language of inflammation.  J Intern Med. 2007;  262 408-414
  • 11 Sell H, Eckel J. Monocyte chemotactic protein-1 and its role in insulin resistance.  Curr Opin Lipidol. 2007;  18 258-262
  • 12 Wong CK, Ho AWY, Tong PCY, Yeung CY, Kong APS, Lun SWM, Chan JCN, Lam CWK. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy.  Clin Exp Immunol. 2007;  149 123-131
  • 13 Schott M, Eckstein A, Willernberg HS, Nguyen TBT, Morgenthaler NG, Scherbaum WA. Improved prediction of relapse of Graves’ thyroitoxicosis by combined determination of TSH receptor and thyroperoxidase antibodies.  Horm Metab Res. 2007;  39 56-61
  • 14 Schott M, Morgenthaler NG, Fritzen R, Feldkamp J, Willenberg HS, Scherbaum WA, Seissler S. Levels of autoantibodies against human TSH receptor predict relapse of hyperthyroidism in Graves’ disease.  Horm Metab Res. 2004;  36 92-96
  • 15 Liu C, Papewalis C, Domberg J, Scherbaum WA, Schott M. Chemokines and autoimmune thyroid diseases.  Horm Metab Res. , 2008 April 14; [Epub ahead of print]
  • 16 Paunkovic J, Paunkovic N. Does autoantibody-negative Graves’ disease exist? A second evaluation of the clinical diagnosis.  Horm Metab Res. 2006;  38 53-56
  • 17 Quadbeck B, Hoermann R, Hahn S, Roggenbuck U, Mann K, Janssen OE. Binding, stimulating and blocking TSH receptor antibodies to the thyrotropin receptor antibodies as predictors of relapse of Graves’ disease after withdrawal of antithyroid treatment.  Horm Metab Res. 2005;  37 745-750
  • 18 Weetman AP. Cellular immune responses in autoimmune thyroid disease.  Clin Endocrinol. 2004;  61 405-413
  • 19 Kasai K, Banba N, Motohashi S, Hattor Y, Manaka K, Shimoda SI. Expression of monocyte chemoattractant protein-1 mRNA and protein in cultured human thyrocytes.  FEBS Letters. 1996;  394 137-140
  • 20 Ashhab Y, Dominguez O, Sospedra M, Roura-Mir C, Lucas-Martin A, Pujol-Borrell R. A one-tube polymerase chain reaction protocol demonstrates CC chemokine overexpression in Graves’ disease glands.  J Clin Endocrinol Metab. 1999;  84 2873-2882
  • 21 Simchen C, Lehmann I, Sittig D, Steinert M, Aust G. Expression and regulation of regulated on activation, normal T cells expressed and secreted in thyroid tissue of patients with Graves’ disease and thyroid autonomy and in thyroid-derived cell populations.  J Clin Endocrinol Metab. 2000;  85 4758-4764
  • 22 Aust G, Steinert M, Kieseling S, Kamprad M, Simchen C. Reduced expression of stromal-derived factor 1 in autonomous thyroid adenomas and its regulation in thyroid-derived cells.  J Clin Endocrinol Metab. 2001;  86 3368-3376
  • 23 Aust G, Steinert M, Boltze C, Kieseling A, Simchen C. GRO-a in normal and pathological thyroid tissues and its regulation in thyroid-derived cells.  J Endocrinol. 2001;  170 513-520
  • 24 Garcia-Lopez MA, Sancho D, Sanchez-Madrid F, Marazuela M. Thyrocytes from autoimmune thyroid disorders produce the chemokines IP-10 and Mig and attract CXCR3 lymphocytes.  J Clin Endocrinol Metab. 2001;  86 5008-5016
  • 25 Romagnani P, Rotondi M, Lazzeri E, Lasagni L, Francalanci M, Buonamano A, Milani S, Vitti P, Chiovato L, Tonacchera M, Bellastella A, Serio M. Expression of IP-10/CXCL10 and MIG/CXCL9 in the thyroid and increased levels of IP-10/CXCL10 in the serum of patients with recent-onset Graves’ disease.  Am J Pathol. 2002;  161 195-206
  • 26 Kokkotou E, Marafelia P, Mantzos EI, Tritos NA. Serum monocyte chemoattractant protein-1 is increased in chronic autoimmune thyroiditis.  Metabolism. 2002;  51 1489-1493
  • 27 Kemp EH, Metcalfe RA, Smith KA, Woodroofe MN, Watson PF, Weetman AP. Detection and localization of chemokine gene expression in autoimmune thyroid disease.  Clin Endocrinol (Oxf). 2003;  59 207-213
  • 28 Aust G, Sittig D, Becherer L, Anderegg U, Schutz A, Lamesch P, Schmucking E. The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases.  Eur J Endocrinol. 2004;  150 225-234
  • 29 Antonelli A, Rotondi M, Fallahi P, Romagnani P, Ferrari SM, Buonamano A, Ferrannini E, Serio M. High levels of circulating CXC chemokine ligand 10 are associated with chronic autoimmune thyroiditis and hypothyroidism.  J Clin Endocrinol Metab. 2004;  89 5496-5499
  • 30 Antonelli A, Rotondi M, Fallahi1 P, Romagnani P, Ferrari1 SM, Paolicchi A, Ferrannini1 E, Serio M. Increase of interferon-g inducible α chemokine CXCL10 but not β chemokine CCL2 serum levels in chronic autoimmune thyroiditis.  Eur J Endocrinol. 2005;  152 171-177
  • 31 Gianoukakis AG, Douglas RS, King CS, Cruikshank WW, Smith TJ. Immunoglobulin G from patients with Graves’ disease induces interleukin-16 and RANTES expression in cultured human thyrocytes: a putative mechanism for T-cell infiltration of the thyroid in autoimmune disease.  Endocrinology. 2006;  147 1941-1949
  • 32 Ferrer-Francesch X, Caro P, Alcalde L, Armengol MP, Ashhab Y, Lucas-Martin A, Martinez-Caceres EM, Juan M, Pujol-Borrell R. One-tube-PCR technique for CCL2, CCL3, CCL4 and CCL5 applied to fine needle aspiration biopsies shows different profiles in autoimmune and non-autoimmune thyroid disorders.  J Endocrinol Invest. 2006;  29 342-349
  • 33 Antonelli A, Rotondi M, Fallahi P, Romagnani P, Ferrari SM, Barani L, Ferrannini E, Serio M. Increase of interferongamma- inducible CXC chemokine CXCL10 serum levels in patients with active Graves’ disease, and modulation by methimazole therapy.  Clin Endocrinol (Oxf). 2006;  64 189-195
  • 34 Antonelli A, Fallahi P, Rotondi M, Ferrari SM, Romagnani P, Grosso M, Ferrannini E, Serio M. Increased serum CXCL10 in Graves’ disease or autoimmune thyroiditis is not associated with hyper- or hypothyroidism per se, but is specifically sustained by the autoimmune, inflammatory process.  Eur J Endocrinol. 2006;  154 651-658
  • 35 Antonelli A, Fallahi P, Rotondi M, Ferrari SM, Serio M, Miccoli P. Serum levels of the interferon-gammainducible alpha chemokine CXCL10 in patients with active Graves’ disease, and modulation by methimazole therapy and thyroidectomy.  Br J Surg. 2006;  93 1226-1231
  • 36 Antonelli A, Rotondi M, Ferrari SM, Fallahi P, Romagnani P, Franceschini SS, Serio M, Ferrannini E. Interferon-gamma- inducible alpha-chemokine CXCL10 involvement in Graves’ ophthalmopathy: modulation by peroxisome proliferator-activated receptor-gamma agonists.  J Clin Endocrinol Metab. 2006;  91 614-620
  • 37 Aso Y, Matsuura H, Momobayashi A, Inukai Y, Sugawara N, Nakano T, Yamamoto R, Wakabayashi S, Takebayashi K, Inukai T. Profound reduction in T-helper (Th) 1 lymphocytes in peripheral blood from patients with concurrent type 1 diabetes and Graves’ disease.  Endocr J. 2006;  53 377-385
  • 38 Aust G, Krohn K, Morgenthaler NG, Schroder S, Schutz A, Edelmann J, Brylla E. Graves’ disease and Hashimoto's thyroiditis in monozygotic twins: case study as well as transcriptomic and immunohistological analysis of thyroid tissues.  Eur J Endocrinol. 2006;  154 13-20
  • 39 Crescioli1 C, Cosmi L, Borgogni1 E, Santarlasci V, Gelmini1 S, Sottili1 M, Sarchielli E, Mazzinghi1 B, Francalanci1 M, Pezzatini1 A, Perigli G, Vannelli GB, Annunziato F, Serio M. Methimazole inhibits CXC chemokine ligand 10 secretion in human thyrocytes.  J Endocrinol. 2007;  195 145-155
  • 40 Antonelli A, Rotondi M, Fallahi P, Grosso M, Boni G, Ferrari SM, Romagnani P, Serio M, Mariani G, Ferrannini E. Iodine-131 given for therapeutic purposes modulates differently interferon-gamma-inducible alpha-chemokine CXCL10 serum levels in patients with active Graves’ disease or toxic nodular goiter.  J Clin Endocrinol Metab. 2007;  92 1485-1490
  • 41 Inukai Y, Momobayashi A, Sugawara N, Aso Y. Changes in expression of T-helper (Th) 1- and Th2-associated chemokine receptors on peripheral blood lymphocytes and plasma concentrations of their ligands, interferon-inducible protein-10 and thymus and activation-regulated chemokine, after antithyroid drug administration in hyperthyroid patients with Graves’ disease.  Eur J Endocrinol. 2007;  156 623-630
  • 42 Weetman AP, Bennett GL, Wong WL. Thyroid follicular cells produce interleukin-8.  J Clin Endocrinol Metab. 2002;  75 328-330
  • 43 Schott M, Feldkamp J, Bathan C, Fritzen R, Scherbaum WA, Seissler J. Detecting TSH-receptor antibodies with the recombinant TBII assay: technical and clinical evaluation.  Horm Metab Res. 2000;  32 429-435
  • 44 Jager W de, te Velthuis H, Prakken BJ, Kuis W, Rijkers GT. Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells.  Clin Diagn Lab Immunol. 2003;  10 133-139
  • 45 Antonelli A, Rotondi M, Fallahi P, Ferrari SM, Paolicchi A, Romagnani P, Serio M, Ferrannini E. Increase of CXCL chemokine CXCL10 and CC chemokine CCL2 serum levels in normal ageing.  Cytokine. 2006;  34 32-38
  • 46 Ledur A, Fitting C, David B, Hamberger C, Cavaillon JM. Variable estimates of cytokine levels produced by commercial ELISA kits: results using international cytokine standards.  J Immunol Methods. 1999;  186 171-179
  • 47 Khan SS, Smith MS, Reda D, Suffredini AF, MacCoy JP. Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers.  Clin Cytometry. 2004;  61B 35-39
  • 48 Liu MY, Xydakis AM, Hoogeveen RC, Jones PH, O’Brian Smith E, Nelson KW, Ballantyne CM. Multiplexed analysis of biomarkers related to obesity and the metabolic syndrome in human plasma, using the Luminex-100 System.  Clin Chem. 2005;  51 1102-1109
  • 49 Christen U, MacGavern DB, Luster AD, Herrath MG von, Oldstone MB. Among CXCR3 chemokines, IFN-γ-inducible protein of 10 kDa (CXC chemokine ligand (CXCL) 10) but not monokine induced by IFN-γ(CXCL9) imprints a pattern for the subsequent development of autoimmune disease.  J Immunol. 2003;  171 6838-6845

1 Both authors contributed equally to this article.

Correspondence

M. SchottMD 

Department of Endocrinology

Diabetes and Rheumatology

University Hospital Düsseldorf

Moorenstr. 5

40225 Düsseldorf

Germany

Phone: +49/211/811 78 10

Fax: +49/211/811 78 60

Email: matthias.schott@med.uni-duesseldorf.de

    >