Exp Clin Endocrinol Diabetes 2008; 116(7): 371-384
DOI: 10.1055/s-2008-1076714
Review

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Transcriptome Studies of Bovine Endometrium Reveal Molecular Profiles Characteristic for Specific Stages of Estrous Cycle and Early Pregnancy

S. Bauersachs 1 , 2 , K. Mitko 1 , S. E. Ulbrich 3 , H. Blum 1 , E. Wolf 1 , 2
  • 1Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
  • 2Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
  • 3Physiology Weihenstephan, TU Munich, Weihenstephan, Germany
Further Information

Publication History

received 05.12.2007 first decision 14.02.2008

accepted 11.04.2008

Publication Date:
17 June 2008 (online)

Abstract

The endometrium undergoes marked functional changes during estrous cycle and pregnancy. As the adjacent environment of the conceptus, it represents the maternal interface for embryo-maternal communication, which is essential to maintain pregnancy. Transcriptome studies provide the unique opportunity to assess molecular profiles changing in response to endocrine or metabolic stimuli or to embryonic pregnancy recognition signals. Here we review the current state of transcriptome profiling techniques and the results of a series of transciptome studies comparing bovine endometrium samples during the estrous cycle or endometrium samples from pregnant vs. non-pregnant animals. These studies revealed specific mRNA profiles which are characteristic for the functional status of the endometrium. Transcriptome studies of endometrial samples recovered during the pre-attachment period identified many interferon-stimulated genes, genes that are possibly involved in embryo-maternal immune modulation (C1S, C1R, C4, SERPING1, UTMP, CD81, IFITM1, BST2), as well as genes affecting cell adhesion (AGRN, CD81, LGALS3BP, LGALS9, GPLD1, MFGE8, and TGM2) and remodeling of the endometrium (CLDN4, MEP1B, LGMN, MMP19, TIMP2, TGM2, MET, and EPSTI1). The results of these transcriptome studies were compared to those of similar microarray analyses in human, mouse and Rhesus monkey to identify similarities in endometrial biology between mammalian species and species-specific differences. Future studies will cover dynamic transcriptome changes between different stages of early pregnancy, the relationship between metabolic problems in dairy cows and the functionality of reproductive tissues as well as endometrium transcriptome profiles in recipients of somatic cell nuclear transfer embryos.

References

  • 1 Spencer TE, Johnson GA, Burghardt RC, Bazer FW. Progesterone and placental hormone actions on the uterus: insights from domestic animals.  Biol Reprod. 2004;  71 2-10
  • 2 Jackson V, Chalkley R. The binding of estradiol-17 beta to the bovine endometrial nuclear membrane.  J Biol Chem. 1974;  249 1615-1626
  • 3 Ruesse I, Sinowatz F. Lehrbuch der Embryologie der Haustiere. 2 ed. Berlin: Parey Buchverlag 1998
  • 4 Kesner JS, Padmanabhan V, Convey EM. Estradiol induces and progesterone inhibits the preovulatory surges of luteinizing hormone and follicle-stimulating hormone in heifers.  Biol Reprod. 1982;  26 571-578
  • 5 Duffy P, Crowe MA, Boland MP, Roche JF. Effect of exogenous LH pulses on the fate of the first dominant follicle in postpartum beef cows nursing calves.  J Reprod Fertil. 2000;  118 9-17
  • 6 Goff AK. Steroid hormone modulation of prostaglandin secretion in the ruminant endometrium during the estrous cycle.  Biol Reprod. 2004;  71 11-16
  • 7 Silvia WJ, Lewis GS, MacCracken JA, Thatcher WW, Wilson  Jr  L. Hormonal regulation of uterine secretion of prostaglandin F2 alpha during luteolysis in ruminants.  Biol Reprod. 1991;  45 655-663
  • 8 Shemesh M. Actions of gonadotrophins on the uterus.  Reproduction. 2001;  121 835-842
  • 9 Wolf E, Arnold GJ, Bauersachs S. et al . Embryo-maternal communication in bovine – strategies for deciphering a complex cross-talk.  Reprod Domest Anim. 2003;  38 276-289
  • 10 Gustincich S, Sandelin A, Plessy C. et al . The complexity of the mammalian transcriptome.  J Physiol. 2006;  575 321-332
  • 11 Stanton LW. Methods to profile gene expression.  Trends Cardiovasc Med. 2001;  11 49-54
  • 12 Mandruzzato S. Technological platforms for microarray gene expression profiling.  Adv Exp Med Biol. 2007;  593 12-18
  • 13 Ahmed FE. Microarray RNA transcriptional profiling: part I. Platforms, experimental design and standardization.  Expert Rev Mol Diagn. 2006;  6 535-550
  • 14 Shi L, Reid LH, Jones WD. et al . The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements.  Nat Biotechnol. 2006;  24 1151-1161
  • 15 Patterson TA, Lobenhofer EK, Fulmer-Smentek SB. et al . Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project.  Nat Biotechnol. 2006;  24 1140-1150
  • 16 Shippy R, Fulmer-Smentek S, Jensen RV. et al . Using RNA sample titrations to assess microarray platform performance and normalization techniques.  Nat Biotechnol. 2006;  24 1123-1131
  • 17 Canales RD, Luo Y, Willey JC. et al . Evaluation of DNA microarray results with quantitative gene expression platforms.  Nat Biotechnol. 2006;  24 1115-1122
  • 18 Yauk CL, Berndt ML. Review of the literature examining the correlation among DNA microarray technologies.  Environ Mol Mutagen. 2007;  48 380-394
  • 19 Giudice LC. Microarray expression profiling reveals candidate genes for human uterine receptivity.  Am J Pharmacogenomics. 2004;  4 299-312
  • 20 Gardina PJ, Clark TA, Shimada B. et al . Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array.  BMC Genomics. 2006;  7 325
  • 21 Carninci P, Kasukawa T, Katayama S. et al . The transcriptional landscape of the mammalian genome.  Science. 2005;  309 1559-1563
  • 22 Katayama S, Tomaru Y, Kasukawa T. et al . Antisense transcription in the mammalian transcriptome.  Science. 2005;  309 1564-1566
  • 23 Samanta MP, Tongprasit W, Stolc V. In-depth query of large genomes using tiling arrays.  Methods Mol Biol. 2007;  377 163-174
  • 24 Reinartz J, Bruyns E, Lin JZ. et al . Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms.  Brief Funct Genomic Proteomic. 2002;  1 95-104
  • 25 Margulies M, Egholm M, Altman WE. et al . Genome sequencing in microfabricated high-density picolitre reactors.  Nature. 2005;  437 376-380
  • 26 Shaffer C. Next-generation sequencing outpaces expectations.  Nat Biotechnol. 2007;  25 149
  • 27 Bauersachs S, Ulbrich SE, Gross K. et al . Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes.  JMolEndocrinol. 2005;  34 889-908
  • 28 Mitko K, Ulbrich SE, Wenigerkind H. et al . Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle: Focus on Mammalian Embryogenomics.  Reproduction. 2008;  135 225-240
  • 29 Bauersachs S, Mitko K, Blum H, Wolf E. Technical note: Bovine oviduct and endometrium array version 1: a tailored tool for studying bovine endometrium biology and pathophysiology.  J Dairy Sci. 2007;  90 4420-4423
  • 30 Bauersachs S, Ulbrich SE, Gross K. et al . Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity.  Reproduction. 2006;  132 319-331
  • 31 Klein C, Bauersachs S, Ulbrich SE. et al . Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period.  Biol Reprod. 2006;  74 253-264
  • 32 Bauersachs S, Blum H, Mallok S. et al . Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: a transcriptomics approach.  Biol Reprod. 2003;  68 1170-1177
  • 33 Bauersachs S, Rehfeld S, Ulbrich SE. et al . Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle.  J Mol Endocrinol. 2004;  32 449-466
  • 34 Tan YF, Li FX, Piao YS, Sun XY, Wang YL. Global gene profiling analysis of mouse uterus during the oestrous cycle.  Reproduction. 2003;  126 171-182
  • 35 Borthwick JM, Charnock-Jones DS, Tom BD. et al . Determination of the transcript profile of human endometrium.  Mol Hum Reprod. 2003;  9 19-33
  • 36 Ace CI, Okulicz WC. Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase.  Reprod Biol Endocrinol. 2004;  2 54
  • 37 Kaushal GP, Walker PD, Shah SV. An old enzyme with a new function: purification and characterization of a distinct matrix-degrading metalloproteinase in rat kidney cortex and its identification as meprin.  J Cell Biol. 1994;  126 1319-1327
  • 38 Murwantoko , Yano M, Ueta Y. et al . Binding of proteins to the PDZ domain regulates proteolytic activity of HtrA1 serine protease.  Biochem J. 2004;  381 895-904
  • 39 Oka C, Tsujimoto R, Kajikawa M. et al . HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins.  Development. 2004;  131 1041-1053
  • 40 Nie G, Hale K, Li Y. et al . Distinct expression and localization of serine protease HtrA1 in human endometrium and first-trimester placenta.  Dev Dyn. 2006;  235 3448-3455
  • 41 Lin VC, Eng AS, Hen NE, Ng EH, Chowdhury SH. Effect of progesterone on the invasive properties and tumor growth of progesterone receptor-transfected breast cancer cells MDA-MB-231.  Clin Cancer Res. 2001;  7 2880-2886
  • 42 Shridhar R, Zhang J, Song J. et al . Cystatin M suppresses the malignant phenotype of human MDA-MB-435S cells.  Oncogene. 2004;  23 2206-2215
  • 43 Morisada T, Kubota Y, Urano T, Suda T, Oike Y. Angiopoietins and angiopoietin-like proteins in angiogenesis.  Endothelium. 2006;  13 71-79
  • 44 Abe K, Tilan JU, Zukowska Z. NPY and NPY receptors in vascular remodeling.  Curr Top Med Chem. 2007;  7 1704-1709
  • 45 Zheng J, Bird IM, Chen DB, Magness RR. Angiotensin II regulation of ovine fetoplacental artery endothelial functions: interactions with nitric oxide.  J Physiol. 2005;  565 59-69
  • 46 Takeda N, Maemura K, Imai Y. et al . Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1.  Circ Res. 2004;  95 146-153
  • 47 Nagai R, Suzuki T, Aizawa K, Shindo T, Manabe I. Significance of the transcription factor KLF5 in cardiovascular remodeling.  J Thromb Haemost. 2005;  3 1569-1576
  • 48 Allison Gray C, Bartol FF, Taylor KM. et al . Ovine uterine gland knock-out model: effects of gland ablation on the estrous cycle.  Biol Reprod. 2000;  62 448-456
  • 49 Noorlander CW, Graan PN de, Nikkels PG, Schrama LH, Visser GH. Distribution of glutamate transporters in the human placenta.  Placenta. 2004;  25 489-495
  • 50 Chong WS, Kwan PC, Chan LY. et al . Expression of divalent metal transporter 1 (DMT1) isoforms in first trimester human placenta and embryonic tissues.  Hum Reprod. 2005;  20 3532-3538
  • 51 Chan SY, Franklyn JA, Pemberton HN. et al . Monocarboxylate transporter 8 expression in the human placenta: the effects of severe intrauterine growth restriction.  J Endocrinol. 2006;  189 465-471
  • 52 Saito Y, Takahashi K. Characterization of selenoprotein P as a selenium supply protein.  Eur J Biochem. 2002;  269 5746-5751
  • 53 Hessle L, Johnson KA, Anderson HC. et al . Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization.  Proc Natl Acad Sci USA. 2002;  99 9445-9449
  • 54 Godkin JD, Dore JJ. Transforming growth factor beta and the endometrium.  Rev Reprod. 1998;  3 1-6
  • 55 Tabibzadeh S. Homeostasis of extracellular matrix by TGF-beta and lefty.  Front Biosci. 2002;  7 d1231-1246
  • 56 Takahashi T, Eitzman B, Bossert NL. et al . Transforming growth factors beta 1, beta 2, and beta 3 messenger RNA and protein expression in mouse uterus and vagina during estrogen-induced growth: a comparison to other estrogen-regulated genes.  Cell Growth Differ. 1994;  5 919-935
  • 57 Osteen KG, Igarashi TM, Bruner-Tran KL. Progesterone action in the human endometrium: induction of a unique tissue environment which limits matrix metalloproteinase (MMP) expression.  Front Biosci. 2003;  8 d78-d86
  • 58 Carson DD, Lagow E, Thathiah A. et al . Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening.  MolHumReprod. 2002;  8 871-879
  • 59 Kao LC, Tulac S, Lobo S. et al . Global gene profiling in human endometrium during the window of implantation.  Endocrinology. 2002;  143 2119-2138
  • 60 Riesewijk A, Martin J, Os R van. et al . Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology.  Mol Hum Reprod. 2003;  9 253-264
  • 61 Gipson IK, Blalock T, Tisdale A. et al . MUC16 is lost from the uterodome (pinopode) surface of the receptive human endometrium: in vitro evidence that MUC16 is a barrier to trophoblast adherence.  Biol Reprod. 2008;  78 134-142
  • 62 Tsukita S, Furuse M. Claudin-based barrier in simple and stratified cellular sheets.  Curr Opin Cell Biol. 2002;  14 531-536
  • 63 Nie G, Li Y, Wang M. et al . Inhibiting uterine PC6 blocks embryo implantation: an obligatory role for a proprotein convertase in fertility.  Biol Reprod. 2005;  72 1029-1036
  • 64 Wolff M von, Wang X, Gabius HJ, Strowitzki T. Galectin fingerprinting in human endometrium and decidua during the menstrual cycle and in early gestation.  Mol Hum Reprod. 2005;  11 189-194
  • 65 Thijssen VL, Postel R, Brandwijk RJ. et al . Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy.  Proc Natl Acad Sci USA. 2006;  103 15975-15980
  • 66 Almkvist J, Karlsson A. Galectins as inflammatory mediators.  Glycoconj J. 2004;  19 575-581
  • 67 Jin DF, Muffly KE, Okulicz WC, Kilpatrick DL. Estrous cycle- and pregnancy-related differences in expression of the proenkephalin and proopiomelanocortin genes in the ovary and uterus.  Endocrinology. 1988;  122 1466-1471
  • 68 Cheon YP, Li Q, Xu X. et al . A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation.  Mol Endocrinol. 2002;  16 2853-2871
  • 69 Low KG, Nielsen CP, West NB. et al . Proenkephalin gene expression in the primate uterus: regulation by estradiol in the endometrium.  Mol Endocrinol. 1989;  3 852-857
  • 70 Joyce MM, White FJ, Burghardt RC. et al . Interferon stimulated gene 15 conjugates to endometrial cytosolic proteins and is expressed at the uterine-placental interface throughout pregnancy in sheep.  Endocrinology. 2005;  146 675-684
  • 71 Ame JC, Spenlehauer C, Murcia G de. The PARP superfamily.  Bioessays. 2004;  26 882-893
  • 72 Chu K, Zingg HH. The nuclear orphan receptors COUP-TFII and Ear-2 act as silencers of the human oxytocin gene promoter.  J Mol Endocrinol. 1997;  19 163-172
  • 73 Kurihara I, Lee DK, Petit FG. et al . COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity.  PLoS Genet. 2007;  3 e102
  • 74 Petit FG, Jamin SP, Kurihara I. et al . Deletion of the orphan nuclear receptor COUP-TFII in uterus leads to placental deficiency.  Proc Natl Acad Sci USA. 2007;  104 6293-6298
  • 75 Takamoto N, You LR, Moses K. et al . COUP-TFII is essential for radial and anteroposterior patterning of the stomach.  Development. 2005;  132 2179-2189
  • 76 Ratnoff OD, Pensky J, Ogston D, Naff GB. The inhibition of plasmin, plasma kallikrein, plasma permeability factor, and the C’1r subcomponent of the first component of complement by serum C’1 esterase inhibitor.  J Exp Med. 1969;  129 315-331
  • 77 Tekin S, Hansen PJ. Natural killer-like cells in the sheep: functional characterization and regulation by pregnancy-associated proteins.  Exp Biol Med (Maywood). 2002;  227 803-811
  • 78 Stewart MD, Johnson GA, Gray CA. et al . Prolactin receptor and uterine milk protein expression in the ovine endometrium during the estrous cycle and pregnancy.  Biol Reprod. 2000;  62 1779-1789
  • 79 Levy S, Todd SC, Maecker HT. CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system.  Annu Rev Immunol. 1998;  16 89-109
  • 80 Yang Y, Lee JH, Kim KY. et al . The interferon-inducible 9–27 gene modulates the susceptibility to natural killer cells and the invasiveness of gastric cancer cells.  Cancer Lett. 2005;  221 191-200
  • 81 Ishikawa J, Kaisho T, Tomizawa H. et al . Molecular cloning and chromosomal mapping of a bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth.  Genomics. 1995;  26 527-534
  • 82 Bezakova G, Ruegg MA. New insights into the roles of agrin.  Nat Rev Mol Cell Biol. 2003;  4 295-308
  • 83 Sasaki T, Brakebusch C, Engel J, Timpl R. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin.  Embo J. 1998;  17 1606-1613
  • 84 Hirashima M, Kashio Y, Nishi N. et al . Galectin-9 in physiological and pathological conditions.  Glycoconj J. 2004;  19 593-600
  • 85 Lewis SK, Farmer JL, Burghardt RC. et al . Galectin 15 (LGALS15): A gene uniquely expressed in the uteri of sheep and goats that functions in trophoblast attachment.  Biol Reprod. 2007;  77 1027-1036
  • 86 Serru V, Le Naour F, Billard M. et al . Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions.  Biochem J. 1999;  340 ((Pt 1)) 103-111
  • 87 Tohami T, Drucker L, Shapiro H, Radnay J, Lishner M. Overexpression of tetraspanins affects multiple myeloma cell survival and invasive potential.  Faseb J. 2007;  21 691-699
  • 88 Chen JM, Fortunato M, Stevens RA, Barrett AJ. Activation of progelatinase A by mammalian legumain, a recently discovered cysteine proteinase.  Biol Chem. 2001;  382 777-783
  • 89 Djonov V, Hogger K, Sedlacek R, Laissue J, Draeger A. MMP-19: cellular localization of a novel metalloproteinase within normal breast tissue and mammary gland tumours.  J Pathol. 2001;  195 147-155
  • 90 Stetler-Stevenson WG, Krutzsch HC, Liotta LA. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family.  J Biol Chem. 1989;  264 17374-17378
  • 91 Salamonsen LA, Nagase H, Woolley DE. Matrix metalloproteinases and their tissue inhibitors at the ovine trophoblast-uterine interface.  J Reprod Fertil Suppl. 1995;  49 29-37
  • 92 Aeschlimann D, Thomazy V. Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases.  Connect Tissue Res. 2000;  41 1-27
  • 93 Chen C, Spencer TE, Bazer FW. Expression of hepatocyte growth factor and its receptor c-met in the ovine uterus.  Biol Reprod. 2000;  62 1844-1850
  • 94 Nielsen HL, Ronnov-Jessen L, Villadsen R, Petersen OW. Identification of EPSTI1, a novel gene induced by epithelial-stromal interaction in human breast cancer.  Genomics. 2002;  79 703-710
  • 95 Glinka A, Wu W, Delius H. et al . Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction.  Nature. 1998;  391 357-362
  • 96 Butler WR. Review: effect of protein nutrition on ovarian and uterine physiology in dairy cattle.  J Dairy Sci. 1998;  81 2533-2539
  • 97 Blanchard T, Ferguson J, Love L. et al . Effect of dietary crude-protein type on fertilization and embryo quality in dairy cattle.  Am J Vet Res. 1990;  51 905-908
  • 98 Garcia-Bojalil CM, Staples CR, Thatcher WW, Drost M. Protein intake and development of ovarian follicles and embryos of superovulated nonlactating dairy cows.  J Dairy Sci. 1994;  77 2537-2548
  • 99 Buford WI, Ahmad N, Schrick FN. et al . Embryotoxicity of a regressing corpus luteum in beef cows supplemented with progestogen.  Biol Reprod. 1996;  54 531-537
  • 100 Horsthemke B, Ludwig M. Assisted reproduction: the epigenetic perspective.  Hum Reprod Update. 2005;  11 473-482
  • 101 Shi W, Zakhartchenko V, Wolf E. Epigenetic reprogramming in mammalian nuclear transfer.  Differentiation. 2003;  71 91-113
  • 102 Dean W, Santos F, Stojkovic M. et al . Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.  Proc Natl Acad Sci USA. 2001;  98 13734-13738
  • 103 Santos F, Zakhartchenko V, Stojkovic M. et al . Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos.  Curr Biol. 2003;  13 1116-1121
  • 104 Hiendleder S, Mund C, Reichenbach HD. et al . Tissue-specific elevated genomic cytosine methylation levels are associated with an overgrowth phenotype of bovine fetuses derived by in vitro techniques.  Biol Reprod. 2004;  71 217-223
  • 105 Hiendleder S, Wirtz M, Mund C. et al . Tissue-specific effects of in vitro fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses.  Biol Reprod. 2006;  75 17-23
  • 106 Chavatte-Palmer P, Heyman Y, Richard C. et al . Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells.  Biol Reprod. 2002;  66 1596-1603
  • 107 Constant F, Guillomot M, Heyman Y. et al . Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois.  Biol Reprod. 2006;  75 122-130
  • 108 Hiendleder S, Bebbere D, Zakhartchenko V. et al . Maternal-fetal transplacental leakage of mitochondrial DNA in bovine nuclear transfer pregnancies: potential implications for offspring and recipients.  Cloning Stem Cells. 2004;  6 150-156
  • 109 Hall VJ, Ruddock NT, French AJ. Expression profiling of genes crucial for placental and preimplantation development in bovine in vivo, in vitro, and nuclear transfer blastocysts.  Mol Reprod Dev. 2005;  72 16-24
  • 110 Stojkovic M, Westesen K, Zakhartchenko V. et al . Coenzyme Q(10) in submicron-sized dispersion improves development, hatching, cell proliferation, and adenosine triphosphate content of in vitro-produced bovine embryos.  Biol Reprod. 1999;  61 541-547
  • 111 Zakhartchenko V, Durcova-Hills G, Stojkovic M. et al . Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts.  J Reprod Fertil. 1999;  115 325-331
  • 112 Berendt FJ, Frohlich T, Schmidt SE. et al . Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period.  Proteomics. 2005;  5 2551-2560
  • 113 Kondo T, Hirohashi S. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics.  Nat Protoc. 2006;  1 2940-2956
  • 114 Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps.  Genetics. 2001;  157 1819-1829

Correspondence

Prof. Dr. E. Wolf

Gene Center

Feodor-Lynen-Str. 25

81377 Munich

Germany

Phone: +49/89/2180 768 00

Fax: +49/89/2180 768 49

Email: ewolf@lmb.uni-muenchen.de

    >