Der Nuklearmediziner 2008; 31(4): 328-335
DOI: 10.1055/s-2008-1076998
Lungendiagnostik

© Georg Thieme Verlag Stuttgart ˙ New York

FDG-PET-basierte Bestrahlungsplanung von nicht kleinzelligen Bronchialkarzinomen: Optimales Atemprotokoll und Patientenpositionierung – ein intraindividueller Vergleich

FDG-PET-Based Radiotherapy Planning in Lung Cancer: Optimum Breathing Protocol and Patient Positioning – An Intraindividual ComparisonA. Grgic1 , U. Nestle3 , A. Schaefer-Schuler1 , S. Kremp2 , C.-M. Kirsch1 , D. Hellwig1
  • 1Klinik für Nuklearmedizin, Universitätsklinikum des Saarlandes, Homburg / Saar
  • 2Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum des Saarlandes, Homburg / Saar
  • 3Klinik für Strahlenheilkunde, Universitätsklinikum Freiburg, Freiburg i. Br.
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. Dezember 2008 (online)

Zusammenfassung

Ziel: Fluoro-2-deoxy-D-Glukose (FDG)-Positronenemissionstomografie (PET) und PET / CT werden zunehmend zur Strahlentherapie (RT)-Planung bei Patienten mit nicht kleinzelligen Bronchialkarzinomen (NSCLC) eingesetzt. Der Planungsprozess basiert oft auf separat erstellten FDG-PET / CT- und Planungs-CT-Aufnahmen. Wir haben intraindividuelle Unterschiede zwischen diagnostischen PET-Aufnahmen (D-PET) und PET-Aufnahmen in Bestrahlungsplanungsposition (RT-PET), die zuvor mit in unterschiedlichen Atemphasen angefertigten Planungs-CT-Aufnahmen koregistriert wurden, miteinander verglichen. Methoden: 16 Patienten mit NSCLC erhielten jeweils eine D-PET-Untersuchung, eine RT-PET-Untersuchung und 3 Planungs-CT-Untersuchungen in unterschiedlichen Atemphasen (Exspiration = EXP, Inspiration = INS und Atemmittellage = MID) am selben Tag. Alle Aufnahmen wurden mit Hilfe eines rigiden Algorithmus koregistriert, wobei insgesamt 6 fusionierte Datensätze entstanden: D-INS, D-EXP, D-MID, RT-INS, RT-EXP und RT-MID. Die Genauigkeit der Fusion wurde durch 3 Betrachter anhand von 8 anatomischen Landmarken (Lungenspitzen, Aortenbogen, Herz, Wirbelsäule, Sternum, Carina tracheae, Diaphragma und Tumor) beurteilt, dabei wurde ein Fusions-Score von 1 (keine Fusion) bis 5 (exakte Fusion) angewandt. Ergebnisse: Alle RT-PET-Fusionsdatensätze wiesen im Vergleich zu den D-PET-Datensätzen eine bessere Fusionsqualität auf (p < 0,001). In Bezug auf das Atmungsprotokoll zeigte RT-MID die beste Fusion (3,7 ± 1,0), gefolgt von RT-EXP (3,5 ± 0,9) und RT-INS (3,0 ± 0,8) (p < 0,001). Im Vergleich der Fusionsqualität der einzelnen anatomischen Landmarken fanden sich die größten Abweichungen an Zwerchfell, Herz und Lungenspitzen. Die Übereinstimmung unter den Betrachtern war mäßig (κ = 0,48; p < 0,001). Schlussfolgerung: Durch Durchführung der PET-Untersuchung in RT-Position kann eine signifikant bessere Fusion von PET und Planungs-CT erreicht werden. Das beste intraindividuelle Ergebnis wird erreicht, wenn die Planungs-CT in Atemmittellage durchgeführt wird. Unsere Daten rechtfertigen die Anfertigung einer separaten Planungs-PET-Untersuchung in RT-Position, falls nur eine diagnostische PET-Untersuchung verfügbar ist.

Abstract

Purpose: FDG-PET and PET / CT is increasingly used for radiotherapy (RT) planning in non-small-cell lung carcinoma (NSCLC). The planning process is often based on separately-acquired FDG-PET / CT and planning CT. We compared intraindividual differences between PET acquired in diagnostic and radiotherapy treatment position coregistered with planning CTs acquired using different breathing protocols. Methods and Materials: Sixteen patients with NSCLC underwent two PET acquisitions (diagnostic position-D-PET, radiotherapy position-RT-PET) and three planning-CT acquisitions (expiration-EXP, inspiration-INS, mid-breathhold-MID) on the same day. All scans were rigidly coregistered resulting in six fused datasets: D-INS, D-EXP, D-MID, RT-INS, RT-EXP and RT-MID. Fusion accuracy was assessed by three readers at eight anatomical landmarks: lung apices, aortic arch, heart, spine, sternum, carina, diaphragm and tumor using an alignment score ranging from 1 (no alignment) to 5 (exact alignment). Results: RT-PET showed better alignment with any CT than D-PET (p < 0.001). With regard to breathing, RT-MID showed the best mean alignment score (3.7 ± 1.0) followed by RT-EXP (3.5 ± 0.9) and RT-INS (3.0 ± 0.8), all differences being significant (p < 0.001). Comparing the alignment scores with regard to anatomical landmarks, the largest deviations were found at diaphragm, heart and apices. Overall, there was a fair agreement (κ = 0.48; p < 0.001) among the three readers. Conclusions: Significantly better fusion of PET and planning-CT can be reached with PET acquired in RT-position. The best intraindividual fusion results are obtained with the planning-CT performed during mid-breathhold. Our data justify the acquisition of a separate planning-PET in RT-treatment position if only a diagnostic PET-scan is available.

Literatur

  • 1 Aquino S L, Asmuth J C, Alpert N M et al. Improved radiologic staging of lung cancer with 2-[18F]-fluoro-2-deoxy-D-glucose-positron emission tomography and computed tomography registration.  J Comput Assist Tomogr. 2003;  27 479-484
  • 2 Beyer T, Antoch G, Blodgett T et al. Dual-modality PET / CT imaging: the effect of respiratory motion on combined image quality in clinical oncology.  Eur J Nucl Med Mol Imaging. 2003;  30 588-596
  • 3 Beyer T, Townsend D W, Brun T et al. A combined PET / CT scanner for clinical oncology.  J Nucl Med. 2000;  41 1369-1379
  • 4 Bradley J, Thorstad W L, Mutic S et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.  Int J Radiat Oncol Biol Phys. 2004;  59 78-86
  • 5 De Ruysscher D, Wanders S, van Haren E et al. Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study.  Int J Radiat Oncol Biol Phys. 2005;  62 988-994
  • 6 Dwamena B A, Sonnad S S, Angobaldo J O et al. Metastases from non-small cell lung cancer: mediastinal staging in the 1990s – meta-analytic comparison of PET and CT.  Radiology. 1999;  213 530-536
  • 7 Fitton I, Steenbakkers R J, Gilhuijs K et al. Impact of Anatomical Location on Value of CT-PET Co-Registration for Delineation of Lung Tumors.  Int J Radiat Oncol Biol Phys. 2008;  70 1403-1407
  • 8 Fitton I, Steenbakkers R J, Zijp L et al. Retrospective attenuation correction of PET data for radiotherapy planning using a free breathing CT.  Radiother Oncol. 2007;  83 42-48
  • 9 Fleiss J. Statistical methods for rates and proportions. 2nd ed. New York: Wiley; 1981
  • 10 Gilman M D, Fischman A J, Krishnasetty V et al. Optimal CT breathing protocol for combined thoracic PET / CT.  AJR Am J Roentgenol. 2006;  187 1357-1360
  • 11 Goerres G W, Kamel E, Heidelberg T N et al. PET-CT image co-registration in the thorax: influence of respiration.  Eur J Nucl Med Mol Imaging. 2002;  29 351-360
  • 12 Gould M K, Kuschner W G, Rydzak C E et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis.  Ann Intern Med. 2003;  139 879-892
  • 13 Gould M K, Sanders G D, Barnett P G et al. Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules.  Ann Intern Med. 2003;  138 724-735
  • 14 Grosu A L, Piert M, Weber W A et al. Positron emission tomography for radiation treatment planning.  Strahlenther Onkol. 2005;  181 483-499
  • 15 Hellwig D, Ukena D, Paulsen F et al. [Meta-analysis of the efficacy of positron emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German Consensus Conference on PET in Oncology 2000].  Pneumologie. 2001;  55 367-377
  • 16 Jarritt P H, Carson K J, Hounsell A R et al. The role of PET / CT scanning in radiotherapy planning.  Br J Radiol. 2006;  79 Spec No 1 S 27-S 35
  • 17 Krishnasetty V, Fischman A J, Halpern E L et al. Comparison of alignment of computer-registered data sets: combined PET / CT versus independent PET and CT of the thorax.  Radiology. 2005;  237 635-639
  • 18 Lardinois D, Weder W, Hany T F et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography.  N Engl J Med. 2003;  348 2500-2507
  • 19 Nestle U, Kremp S, Grosu A L. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives.  Radiother Oncol. 2006;  81 209-225
  • 20 Nestle U, Kremp S, Schaefer-Schuler A et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer.  J Nucl Med. 2005;  46 1342-1348
  • 21 Nestle U, Schaefer-Schuler A, Kremp S et al. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer.  Eur J Nucl Med Mol Imaging. 2007;  34 453-462
  • 22 Shekhar R, Walimbe V, Raja S et al. Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners.  J Nucl Med. 2005;  46 1488-1496
  • 23 Sonke J J, Lebesque J, van Herk M. Variability of four-dimensional computed tomography patient models.  Int J Radiat Oncol Biol Phys. 2008;  70 590-598
  • 24 Underberg R W, van Sornsen de Koste J R, Lagerwaard F J et al. A dosimetric analysis of respiration-gated radiotherapy in patients with stage III lung cancer.  Radiat Oncol. 2006;  1 8
  • 25 Vanuytsel L J, Vansteenkiste J F, Stroobants S G et al. The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer.  Radiother Oncol. 2000;  55 317-324
  • 26 Wolthaus J W, van Herk M, Muller S H et al. Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans.  Phys Med Biol. 2005;  50 1569-1583
  • 27 Wolz G, Nomayr A, Hothrn T et al. Anatomical accuracy of interactive and automated rigid registration between X-ray CT and FDG-PET.  Nuklearmedizin. 2007;  46 43-48

Dr. A. Grgic

Universitätsklinikum des Saarlandes · Klinik für Nuklearmedizin

Kirrbergerstr. 1, Geb. 50

66421 Homburg / Saar

Telefon: +49 / 68 41 / 1 62 34 21

Fax: +49 / 68 41 / 1 62 46 92

eMail: aleksandar.grgic@gmx.de

    >