References and Notes
For recent reviews of transition-metal-catalyzed [2+2+2] cycloadditions,
see:
<A NAME="RU04708ST-1A">1a</A>
Agenet N.
Buisine O.
Slowinski F.
Gandon V.
Aubert C.
Malacria M. In
Organic Reactions
Vol.
68:
Overman LE.
John
Wiley;
Hoboken:
2007.
p.1
<A NAME="RU04708ST-1B">1b</A>
Heller B.
Hapke M.
Chem. Soc. Rev.
2007,
36:
1085
<A NAME="RU04708ST-1C">1c</A>
Chopade PR.
Louie J.
Adv. Synth.
Catal.
2006,
348:
2307
<A NAME="RU04708ST-1D">1d</A>
Gandon V.
Aubert C.
Malacria M.
Chem.
Commun.
2006,
2209
<A NAME="RU04708ST-1E">1e</A>
Kotha S.
Brahmachary E.
Lahiri K.
Eur.
J. Org. Chem.
2005,
4741
<A NAME="RU04708ST-1F">1f</A>
Yamamoto Y.
Curr.
Org. Chem.
2005,
9:
503
<A NAME="RU04708ST-1G">1g</A>
Robinson JE. In
Modern Rhodium-Catalyzed
Organic Reactions
Evans PA.
Wiley-VCH;
Weinheim:
2005.
p.129
<A NAME="RU04708ST-1H">1h</A>
Varela JA.
Saá C.
Chem.
Rev.
2003,
103:
3787
For the use of stoichiometric cobalt
reagents, see:
<A NAME="RU04708ST-2A">2a</A>
Harvey DF.
Johnson BM.
Ung CS.
Vollhardt KPC.
Synlett
1989,
15
<A NAME="RU04708ST-2B">2b</A> For the use of stoichiometric zirconacyclopentadienes,
see:
Gleiter R.
Schehlmann V.
Tetrahedron
Lett.
1989,
30:
2893
<A NAME="RU04708ST-2C">2c</A>
Takahashi T.
Li Y.
Ito T.
Xu F.
Nakajima K.
Liu Y.
J.
Am. Chem. Soc.
2002,
124:
1144
For Ni catalysis, see:
<A NAME="RU04708ST-3A">3a</A>
Tsuda T.
Kiyoi T.
Miyane T.
Saegusa T.
J. Am. Chem. Soc.
1988,
110:
8570
<A NAME="RU04708ST-3B">3b</A>
Tekavec TN.
Louie J.
Org. Lett.
2005,
7:
4037
<A NAME="RU04708ST-3C">3c</A>
Tekavec TN.
Louie J.
J. Org. Chem.
2008,
73:
2641
<A NAME="RU04708ST-4">4</A> For Ni-catalyzed [4+2+2] cycloaddition
of 1,6-diynes with cyclobutanones, see:
Murakami M.
Ashida S.
Matsuda T.
J.
Am. Chem. Soc.
2006,
128:
2166
<A NAME="RU04708ST-5">5</A> For Ru catalysis, see:
Yamamoto Y.
Takagishi H.
Itoh K.
J. Am. Chem. Soc.
2002,
124:
6844
<A NAME="RU04708ST-6">6</A> For Ru(II)-catalyzed hydrative cyclization
and [4+2] cycloaddition of yne-enones,
see:
Trost BM.
Brown RE.
Toste FD.
J.
Am. Chem. Soc.
2000,
122:
5877
<A NAME="RU04708ST-7">7</A>
Bennacer B.
Fujiwara M.
Lee S.-Y.
Ojima I.
J. Am. Chem. Soc.
2005,
127:
17756
<A NAME="RU04708ST-8">8</A>
Kong JR.
Krische MJ.
J. Am. Chem. Soc.
2006,
128:
16040
For examples of carbonyl insertion
into a Rh-C bond, see:
<A NAME="RU04708ST-9A">9a</A>
Krug C.
Hartwig JF.
J. Am. Chem. Soc.
2002,
124:
1674
<A NAME="RU04708ST-9B">9b</A>
Fujii T.
Koike T.
Mori A.
Osakada K.
Synlett
2002,
298
<A NAME="RU04708ST-10A">10a</A>
Tanaka K.
Otake Y.
Wada A.
Noguchi K.
Hirano M.
Org. Lett.
2007,
9:
2203
After our publication, a similar manuscript was published,
see:
<A NAME="RU04708ST-10B">10b</A>
Tsuchikama K.
Yoshinami Y.
Shibata T.
Synlett
2007,
1395
<A NAME="RU04708ST-11">11</A> Recently, we have reported a cationic
rhodium(I)-H8-BINAP-catalyzed regio-, diastereo-,
and enantioselective [2+2+2] cycloaddition
of 1,6-enynes with electron-deficient ketones. See:
Tanaka K.
Otake Y.
Sagae H.
Noguchi K.
Hirano M.
Angew.
Chem. Int. Ed.
2008,
47:
1312
<A NAME="RU04708ST-12A">12a</A>
Nishida G.
Noguchi K.
Hirano M.
Tanaka K.
Angew. Chem.
Int. Ed.
2007,
46:
3951
<A NAME="RU04708ST-12B">12b</A>
Nishida G.
Noguchi K.
Hirano M.
Tanaka K.
Angew. Chem. Int. Ed.
2008,
47:
3410
For selected recent examples, see:
<A NAME="RU04708ST-13A">13a</A>
Mandal T.
Samanta S.
Zhao C.-G.
Org.
Lett.
2007,
9:
943
<A NAME="RU04708ST-13B">13b</A>
Samanta S.
Zhao C.-G.
J. Am. Chem. Soc.
2006,
128:
7442
<A NAME="RU04708ST-13C">13c</A>
Demir AS.
Reis O.
Kayalar M.
Eymur S.
Reis B.
Synlett
2006,
3329
<A NAME="RU04708ST-13D">13d</A>
Kim DY.
Wiemer DF.
Tetrahedron Lett.
2003,
44:
2803
For examples, see:
<A NAME="RU04708ST-14A">14a</A>
Yamashita M.
Kojima M.
Yoshida H.
Ogata T.
Inokawa S.
Bull.
Chem. Soc. Jpn.
1980,
53:
1625
<A NAME="RU04708ST-14B">14b</A>
Kojima M.
Yamashita M.
Yoshida H.
Ogata T.
Synthesis
1979,
147
To the best of our knowledge, only
two examples of a cycloaddition reaction using acyl phosphonates
as a coupling partner have been reported. For a photochemical cycloaddition
with aziridines, see:
<A NAME="RU04708ST-15A">15a</A>
Gakis N.
Heimgartner H.
Schmid H.
Helv.
Chim. Acta
1975,
58:
748
For hetero-Diels-Alder reactions involving α,β-unsaturated
acyl phosphonates, see:
<A NAME="RU04708ST-15B">15b</A>
Evans DA.
Johnson JS.
Olhava EJ.
J. Am. Chem. Soc.
2000,
122:
1635
For our accounts of [2+2+2] cycloadditions
catalyzed by a cationic rhodium(I)-BINAP-type bisphosphine
complex, see:
<A NAME="RU04708ST-16A">16a</A>
Tanaka K.
Synlett
2007,
1977
<A NAME="RU04708ST-16B">16b</A>
Tanaka K.
Nishida G.
Suda T.
J.
Synth. Org. Chem. Jpn.
2007,
65:
862
<A NAME="RU04708ST-17">17</A>
In general, terminal alkynes are more
reactive and coordinative toward rhodium than internal alkynes. Therefore,
the reaction of terminal 1,6-diyne 1d with 2b results in the rapid homo-[2+2+2] cycloaddition
of 1d via a rhodacyclopentadiene intermediate.
On the other hand, the formation of the rhodacyclopentadiene intermediate
from terminal 1,7-diyne 1h may be slower
than that from terminal 1,6-diynes for steric reasons. Thus, the
reaction of 1h with 2b may
furnish the oxarhodacyclopentene intermediate. Insertion of another
terminal alkyne moiety of 1h followed by
reductive elimination of rhodium furnishes the corresponding cross-[2+2+2] cycloaddition
product 3hb in good yield.
<A NAME="RU04708ST-18">18</A> Equilibrium coordination of the
ester carbonyl oxygen vs. the alkyne moiety of a malonate-linked
1,6-diyne is proposed in the Ru-catalyzed [2+2+2] cycloaddition
of alkynes, see:
Yamamoto Y.
Arakawa T.
Ogawa R.
Itoh K.
J.
Am. Chem. Soc.
2003,
125:
12143
<A NAME="RU04708ST-19">19</A>
Typical Procedure
(Table 2, entry 1)
Under an argon atmosphere, H8-BINAP
(12.6 mg, 0.02 mmol) and [Rh(cod)2]BF4 (8.1
mg, 0.02 mmol) were dissolved in CH2Cl2 (2.0
mL), and the mixture was stirred at r.t. for 5 min. Hydrogen was
introduced to the resulting solution in a Schlenk tube. After stirring
at r.t. for 1 h, the resulting solution was concentrated to dryness
and dissolved in CH2Cl2 (0.5 mL). To this
solution was added dropwise over 1 min a solution of diyne 1a (55.1 mg, 0.20 mmol) and acyl phosphonate 2a (72.1 mg, 0.40 mmol) in CH2Cl2 (1.0 mL)
at r.t. The mixture was stirred at r.t. for 1 h. The resulting solution
was concentrated and purified by a preparative TLC (hexane-EtOAc,
1:1), which furnished 3aa (76.2 mg, 0.017
mmol, 84% yield) as a pale yellow oil.
Compound 3aa: IR (neat): 3052, 2983, 2867, 1661,
1347, 1237, 1164, 1022, 671 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ (E
-isomer) = 7.74-7.63
(m, 2 H), 7.33-7.21 (m, 2 H), 4.49-4.19 (m, 4
H), 3.97-3.73 (m, 4 H), 2.37 (s, 3 H), 2.10 (s, 3 H), 1.90-1.77
(m, 6 H), 1.16 (t, J = 7.2
Hz, 6 H); δ (Z-isomer) = 7.74-7.63
(m, 2 H), 7.33-7.21 (m, 2 H), 4.30-4.19 (m, 4
H), 4.12-3.97 (m, 4 H), 2.38 (s, 3 H), 2.10 (s, 3 H), 1.90-1.77
(m, 3 H), 1.58 (dd, J = 13.5,
1.5 Hz, 3 H), 1.28 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 193.9, 149.6,
149.4, 143.6, 142.8, 142.7, 133.9, 131.6, 129.9, 129.7, 127.4, 126.4,
124.0, 61.64, 61.56, 58.87, 58.86, 55.2, 28.3, 27.9, 21.4, 20.0,
19.8, 16.2, 16.11, 16.10, 15.9, 15.8. ³¹P
NMR (121 MHz, CDCl3): δ (E
-isomer) = 17.8; δ (Z
-isomer) = 17.9.
ESI-HRMS: m/z calcd for C21H30NO6PSNa [M + Na]+:
478.1429; found: 478.1428.
Compound (E)-3ab: pale yellow oil. ¹H
NMR (300 MHz, CDCl3): δ = 7.51 (d, J = 8.4 Hz,
2 H), 7.28 (d, J = 8.4
Hz, 2 H), 7.16-7.00 (m, 3 H), 6.95-6.83 (m, 2
H), 4.12-3.87 (m, 8 H), 2.45 (s, 3 H), 2.29 (d, J = 3.3 Hz,
3 H), 2.17 (s, 3 H), 1.18 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 193.3, 159.8,
148.7, 148.4, 147.6, 147.4, 143.7, 136.9, 133.1, 132.4, 131.8, 129.9,
128.22, 128.16, 127.91, 127.89, 127.62, 127.58, 127.3, 62.1, 62.0,
57.9, 54.8, 28.8, 21.5, 20.3, 20.2, 16.2, 16.1. ³¹P
NMR (121 MHz, CDCl3): δ = 14.5.
Compound
(Z)-3ab: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.76
(d, J = 8.4
Hz, 2 H), 7.41-7.24 (m, 5 H), 7.17-7.09 (m, 2
H), 4.52 (s, 2 H), 4.51-4.28 (m, 2 H), 3.92-3.67
(m, 2 H), 3.78-3.52 (m, 2 H), 2.40 (s, 3 H), 2.32 (s, 3 H),
1.68 (d, J = 2.7
Hz, 3 H), 1.04 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 193.9,
148.7, 148.6, 145.3, 145.2, 143.7, 136.0, 135.9, 134.0, 133.5, 132.04,
132.03, 131.1, 129.8, 128.83, 128.77, 128.53, 128.51, 127.83, 127.80,
127.5, 62.14, 62.06, 59.0, 55.3, 28.7, 21.5, 21.4, 21.2, 16.1, 16.0. ³¹P
NMR (121 MHz, CDCl3): δ = 14.0.
Compound 3bb: pale yellow oil. ¹H
NMR (300 MHz, CDCl3): δ (E
-isomer) = 7.73 (d, J = 7.8 Hz,
2 H), 7.41-7.05 (m, 7 H), 4.60 (t, J = 4.2
Hz, 2 H), 4.37 (t, J = 4.2
Hz, 2 H), 3.91-3.77 (m, 2 H), 3.77-3.60 (m, 2
H), 3.36 (d, J = 0.9
Hz, 3H), 2.43 (s, 3 H), 2.38 (s, 3 H), 1.05 (t, J = 7.2
Hz, 6 H); δ (Z
-isomer) = 7.57
(d, J = 7.5
Hz, 2 H), 7.41-7.05 (m, 5 H), 6.99 (d, J = 7.2
Hz, 2 H), 4.23 (t, J = 4.2
Hz, 2 H), 4.13-3.91 (m, 6 H), 3.82 (s, 3 H), 2.43 (s, 3
H), 2.22 (s, 3 H), 1.19 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 194.1, 193.7,
165.3, 164.8, 164.5, 143.7, 143.6, 141.0, 140.6, 140.5, 140.4, 140.3
138.7, 138.6, 138.5, 138.41, 138.38, 136.2, 136.0, 134.9, 134.8,
133.8, 133.7, 133.0, 129.8, 129.7, 128.6, 128.52, 128.49, 128.45,
128.22, 128.17, 127.9, 127.8, 127.6, 127.5, 127.4, 63.0, 62.9, 62.8,
59.88, 59.86, 59.3, 55.5, 55.3, 53.1, 52.5, 29.0, 28.8, 21.42, 21.38,
16.1, 16.0, 15.9. ³¹P NMR (121 MHz,
CDCl3): δ (E
-isomer) = 11.9; δ (Z
-isomer) = 11.0.
Compound
(E)-3ca: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.73
(d, J = 8.1
Hz, 2 H), 7.35 (d, J = 8.1
Hz, 2 H), 7.29-7.16 (m, 1 H), 4.46-4.35 (m, 4
H), 4.18-4.03 (m, 4 H), 2.44 (s, 3 H), 2.21 (s, 3 H), 1.85
(dd, J = 15.0,
1.5 Hz, 3 H), 1.33 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 194.0,
144.2, 141.7, 141.3, 135.5, 134.8, 133.2, 133.1, 132.9, 132.5, 130.0,
127.5, 62.3, 62.2, 57.8, 55.0, 29.9, 21.5, 16.4, 16.3, 14.9, 14.8. ³¹P
NMR (121 MHz, CDCl3): δ = 19.3.
Compound
(Z)-3ca: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.74
(d, J = 8.1
Hz, 2 H), 7.33 (d, J = 8.1
Hz, 2 H), 6.77-6.54 (m, 1 H), 4.51-4.43 (m, 2
H), 4.37-4.29 (m, 2 H), 4.07-3.90 (m, 4 H), 2.42
(s, 3 H), 2.20 (s, 3 H), 2.04 (dd, J = 13.2,
1.8 Hz, 3 H), 1.24 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 194.1,
143.9, 143.8, 143.7, 134.2, 134.0, 133.9, 133.6, 133.48, 133.47,
131.9, 129.8, 127.6, 62.1, 62.0, 59.1, 59.0, 55.0, 29.8, 22.1, 22.0,
21.5, 16.3, 16.2. ³¹P NMR (121 MHz,
CDCl3): δ = 16.7.
Compound
(E)-3eb: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.25-7.15
(m, 3 H), 7.07-6.97 (m, 2 H), 4.12-3.91 (m, 4
H), 3.60 (s, 6 H), 3.10-3.02 (m, 2 H), 2.95 (s, 2 H), 2.35
(d, J = 3.3
Hz, 3 H), 2.18 (s, 3 H), 1.20 (t, J = 7.2 Hz,
6 H). ¹³C NMR (75 MHz, CDCl3): δ = 195.4,
171.0, 152.0, 151.7, 151.6, 151.4, 137.4, 137.3, 133.8, 129.8, 128.8,
128.7, 127.8, 127.5, 127.3, 61.9, 61.8, 56.8, 53.0, 44.9, 40.8,
29.0, 20.2, 20.1, 16.2, 16.1. ³¹P NMR
(121 MHz, CDCl3): δ = 15.6.
Compound
(Z)-3eb: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.40-7.28
(m, 3 H), 7.22-7.16 (m, 2 H), 3.96-3.70 (m, 4
H), 3.74 (s, 6 H), 3.70-3.30 (m, 4 H), 2.33 (s, 3 H), 1.79
(d, J = 2.4
Hz, 3 H), 1.10 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 195.8
152.4, 152.2, 150.1, 150.0, 136.8, 136.6, 133.9, 130.5, 129.11,
129.05, 128.4, 128.0, 127.5, 127.4, 61.9, 61.8, 57.3, 53.0, 45.6,
41.0, 28.9, 21.1, 20.9, 16.1, 16.0. ³¹P
NMR (121 MHz, CDCl3): δ = 14.7.
Compound
(E)-3ha: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.66
(s, 1 H), 7.14-7.00 (m, 1 H), 4.20-3.95 (m, 4
H), 2.34-2.14 (m, 4 H), 1.77 (dd, J = 14.4,
1.8 Hz, 3 H), 1.75-1.59 (m, 4 H), 1.34 (t, J = 7.2 Hz,
6 H). ¹³C NMR (75 MHz, CDCl3): δ = 192.2,
154.0, 153.7, 140.9, 140.7, 135.6, 131.6, 129.2, 62.0, 61.9, 30.6,
21.7, 21.6, 21.2, 16.4, 16.3, 14.2, 14.1. ³¹P
NMR (121 MHz, CDCl3): δ = 20.3.
Compound
(Z)-3ha: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.79
(s, 1 H), 6.70-6.60 (m, 1 H), 4.12-3.92 (m, 4
H), 2.35-2.15 (m, 4 H), 2.04 (dd, J = 13.2,
1.8 Hz, 3 H), 1.74-1.56 (m, 4 H), 1.28 (t, J = 7.2 Hz,
6 H). ¹³C NMR (75 MHz, CDCl3): δ = 192.6,
155.6, 155.5, 141.0, 140.9, 135.1, 131.7, 129.3, 61.7, 61.6, 31.4,
21.8, 21.7, 21.6, 21.5, 21.1, 16.4, 16.3. ³¹P
NMR (121 MHz, CDCl3): δ = 17.6.
Compound
(E)-3hb: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.85
(s, 1 H), 7.54 (d, J = 23.1
Hz, 1 H), 7.32-7.13 (m, 5 H), 4.18-3.99 (m, 4
H), 2.16-2.00 (m, 4 H), 1.57-1.41 (m, 4 H), 1.26
(t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 191.6,
153.3, 153.0, 142.4, 142.2, 137.3, 135.9, 135.0, 134.4, 134.3, 128.6,
128.5, 128.4, 128.20, 128.17, 62.5, 62.4, 30.92, 30.90, 21.7, 21.0,
16.3, 16.2. ³¹P NMR (121 MHz, CDCl3): δ = 17.2.
Compound
(Z)-3hb: pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.93
(s, 1 H), 7.45-7.31 (m, 5 H), 7.08-6.88 (m, 1
H), 4.08-3.83 (m, 4 H), 2.50-2.38 (m, 2 H), 2.34-2.21
(m, 2 H), 1.75-1.64 (m, 4 H), 1.18 (t, J = 7.2
Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 192.4,
155.5, 155.4, 144.4, 144.3, 138.5, 138.4, 137.7, 135.3, 135.17,
135.15, 128.3, 128.12, 128.05, 62.1, 62.0, 31.24, 31.21, 21.9, 21.7,
21.1, 16.2, 16.1. ³¹P NMR (121 MHz,
CDCl3): δ = 15.1.