Anästhesiol Intensivmed Notfallmed Schmerzther 2008; 43(5): 364-373
DOI: 10.1055/s-2008-1079111
Fachwissen
Topthema:Monitoring in der Anästhesie
© Georg Thieme Verlag Stuttgart · New York

Perioperatives hämodynamisches Monitoring – ein Überlebensvorteil für anästhesiologisch betreute Patienten?

Hemodynamic monitoring in the perioperative periodJürgen Graf, Marc Irqsusi, Uwe Janssens
Further Information

Publication History

Publication Date:
08 May 2008 (online)

Zusammenfassung

Das perioperative hämodynamische Monitoring kann in ein obligates, nicht invasives Basismonitoring und ein erweitertes hämodynamisches Monitoring unterteilt werden. Sowohl patienten–, als auch operationsspezifische Aspekte können die Indikation für eine Erweiterung des hämodynamischen Monitorings darstellen. Nutzen und Qualität der perioperativen Patientenüberwachung hängen ausschließlich von der Kenntnis der Möglichkeiten und Limitationen der eingesetzten Monitoringinstrumente ab.

Abstract

Both, obligatory non–invasive hemodynamic monitoring and adjunctive hemodynamic monitoring need to be considered perioperatively. Patient as well as surgical requirements may contribute to the decision making process. Effectiveness and quality of the perioperative patient monitoring solely depends on the knowledge and awareness of the anesthesist with regard to the potentials and limitations of the applied monitoring.

Kernaussagen

  • Die häufigsten Ursachen perioperativer Morbidität und Letalität stellen kardiovaskuläre Erkrankungen dar.

  • Das Ziel des hämodynamischen Monitorings ist die Sicherstellung einer adäquatenOrganperfusion mit entsprechender Organoxygenierung und –nutrition.

  • Das erweiterte hämodynamische Monitoring allein verbessert die Patientenprognose nicht, ist aber mit einer Zunahme von Risiken und Komplikationen assoziiert.

  • Möglichkeiten, Grenzen, Risiken und das spezifische Fehlerpotential der eingesetzten Messinstrumente sollten dem Anwender bekannt sein.

  • Allein die Kenntnis des Anästhesisten entscheidet, ob ein Überwachungsverfahren nützlich oder schädlich ist.

Literaturverzeichnis

  • 1 Mallon J. W.. Ernest Amory Codman: The End Result of a Life in Medicine. 1st ed. W.B. Saunders 2000
  • 2 Janssens U.. Hämodynamisches Monitoring.  Internist. 2000;  41 995-1010
  • 3 Mangano DT. et al. . Association of perioperative myocardial ischemia with cardiac morbidity and mortality in men undergoing noncardiac surgery. The Study of Perioperative Ischemia Research Group.  N Engl J Med. 1990;  323 1781-1788
  • 4 Jain U. et al. . Electrocardiographic and hemodynamic changes and their association with myocardial infarction during coronary artery bypass surgery. A multicenter study. Multicenter Study of Perioperative Ischemia (McSPI) Research Group.  Anesthesiology. 1997;  86 576-591
  • 5 Browner WS. et al. . In–hospital and long–term mortality in male veterans following noncardiac surgery. The Study of Perioperative Ischemia Research Group.  JAMA. 1992;  268 228-232
  • 6 Marsch SC. et al. . Failure of continuous three–channel Holter monitoring to detect acute peri–operative myocardial infarction.  Anaesthesia. 1992;  47 34-37
  • 7 Buhre W. et al. . Perioperative management and monitoring in anaesthesia.  Lancet. 2003;  362 1839-1846
  • 8 London MJ. et al. . Intraoperative myocardial ischemia: localization by continuous 12–lead electrocardiography.  Anesthesiology. 1988;  69 232-241
  • 9 Drummond JC.. The lower limit of autoregulation: time to revise our thinking?.  Anesthesiology. 1997;  86 1431-1433
  • 10 Ramsey M.. Blood pressure monitoring: automated oscillometric devices.  J Clin Monit. 1991;  7 56-67
  • 11 Perloff D. et al. . AHA Medical/Scientific Statement Special Report: Human blood pressure determination by sphygmomanometry.  Circulation. 1993;  88 2460-2470
  • 12 Graf J, Janssens U.. Methoden und mögliche Fehlerquellen beim hämodynamischen Monitoring. In: Eckard, Forst, Burchardi (Hrsg.). Intensivmedizin. Landberg/Lech: Hüthig Jehle Rehm Verlagsgruppe 2006: 1-30
  • 13 Gibbs N, Gardner RM.. Dynamics of invasive pressure monitoring systems: clinical and laboratory evaluation.  Heart Lung. 1988;  17 43-51
  • 14 Gardner RM.. Direct blood pressure measurement: dynamic response requirements.  Anesthesiology. 1981;  54 227-236
  • 15 Kee L. et al. . Echocardiographic determination of valid zero reference levels in supine and lateral positions.  Am J Crit Care. 1993;  2 72-78
  • 16 Winsor T, Burch GE.. Phlebostatic axis and phlebostatic level: reference levels for venous pressure measurement in man.  Proc Soc Exp Biol Med. 1945;  58 165-169
  • 17 Bartz B. et al. . Differences in mid–anterioposterior level and midaxillary level in patients with a range of chest configurations.  Heart Lung. 1988;  17 308
  • 18 Gardner RM, Hujcs M.. Fundamentals of physiologic monitoring.  AACN Clin Issues. 1993;  4 11-24
  • 19 Martin C. et al. . Long–term arterial cannulation in ICU patients using the radial artery or dorsalis pedis artery.  Chest. 2001;  119 901-906
  • 20 Sprung CL. et al. . Risk of right bundle–branch block and complete heart block during pulmonary artery catheterization.  Crit Care Med. 1989;  17 1-3
  • 21 Boyd KD. et al. . A prospective study of complications of pulmonary artery catheterizations in 500 consecutive patients.  Chest. 1983;  84 245-249
  • 22 Kearney TJ, Shabot MM.. Pulmonary artery rupture associated with the Swan–Ganz catheter.  Chest. 1995;  108 1349-1352
  • 23 Marx G, Reinhart K.. Venous oximetry.  Curr Opin Crit Care. 2006;  12 263-268
  • 24 Shoemaker WC. et al. . Hemodynamic patterns of survivors and nonsurvivors during high risk elective surgical operations.  World J Surg. 1999;  23 1264-1270
  • 25 Della G Rocca. et al. . Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique.  Br J Anaesth. 2002;  88 350-356
  • 26 Goedje O. et al. . Accuracy of beat–to–beat cardiac output monitoring by pulse contour analysis in hemodynamical unstable patients.  Med Sci Monit. 2001;  7 1344-1350
  • 27 Goedje O. et al. . Reliability of a new algorithm for continuous cardiac output determination by pulse–contour analysis during hemodynamic instability.  Crit Care Med. 2002;  30 52-58
  • 28 van Lieshout JJ, Wesseling KH.. Continuous cardiac output by pulse contour analysis?.  Br J Anaesth. 2001;  86 467-469
  • 29 Valtier B. et al. . Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler.  Am J Respir Crit Care Med. 1998;  158 77-83
  • 30 Laupland KB, Bands CJ.. Utility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review.  Can J Anaesth. 2002;  49 393-401
  • 31 Van den Oever HL. et al. . USCOM (Ultrasonic Cardiac Output Monitors) lacks agreement with thermodilution cardiac output and transoesophageal echocardiography valve measurements.  Anaesth Intensive Care. 2007;  35 903-910
  • 32 Tan HL. et al. . Clinical evaluation of USCOM ultrasonic cardiac output monitor in cardiac surgical patients in intensive care unit.  Br J Anaesth. 2005;  94 287-291
  • 33 Bloch KE.. Impedance and inductance monitoring of cardiac output. In: Tobin MJ, editor. Principles and practice of intensive care monitoring. New York: McGraw–Hill 1998: 915-930
  • 34 Yem JS. et al. . Sources of error in noninvasive pulmonary blood flow measurements by partial rebreathing: a computer model study.  Anesthesiology. 2003;  98 881-887
  • 35 Neuhauser C. et al. . Partial CO2 rebreathing technique versus thermodilution measurement of cardiac output before and after operations with extracorporeal circulation.  Anaesthesist. 2002;  51 625-633
  • 36 Gama A. et al. . Performance of the partial CO2 rebreathing technique under different hemodynamic and ventilation/perfusion matching conditions.  Crit Care Med. 2003;  31 543-551
  • 37 Tachibana K. et al. . Noninvasive cardiac output measurement using partial carbon dioxide rebreathing is less accurate at settings of reduced minute ventilation and when spontaneous breathing is present.  Anesthesiology. 2003;  98 830-837
  • 38 Opdam HI. et al. . A pilot assessment of the FloTrac cardiac output monitoring system.  Intensive Care Med. 2007;  33 344-349
  • 39 Breukers RM. et al. . Cardiac output measured by a new arterial pressure waveform analysis method without calibration compared with thermodilution after cardiac surgery.  J Cardiothorac Vasc Anesth. 2007;  21 632-635
  • 40 Mathew JP. et al. . ASE/SCA recommendations and guidelines for continuous quality improvement in perioperative echocardiography.  Anesth Analg. 2006;  103 1416-1425
  • 41 Shanewise JS.. How to reliably detect ischemia in the intensive care unit and operating room.  Semin Cardiothorac Vasc Anesth. 2006;  10 101-109
  • 42 Lichtwarck–Aschoff M. et al. . Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation.  Intensive Care Med. 1992;  18 142-147
  • 43 Holm C. et al. . Intrathoracic blood volume as an end point in resuscitation of the severely burned: an observational study of 24 patients.  J Trauma. 2000;  48 728-734
  • 44 Michard F, Teboul JL.. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence.  Chest. 2002;  121 2000-2008
  • 45 Bendjelid K, Romand JA.. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care.  Intensive Care Med. 2003;  29 352-360
  • 46 Reuter DA. et al. . Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function.  Crit Care Med. 2003;  31 1399-1404
  • 47 Rex S. et al. . Prediction of fluid responsiveness in patients during cardiac surgery.  Br J Anaesth. 2004;  93 782-788
  • 48 Maizel J. et al. . Diagnosis of central hypovolemia by using passive leg raising.  Intensive Care Med. 2007;  33 1133-1138
  • 49 Lamia al B et. Relationship between the tricuspid annular plane systolic excursion and right and left ventricular function in critically ill patients.  Intensive Care Med. 2007;  33 2143-2149
  • 50 Lamia B. et al. . Contribution of arterial stiffness and stroke volume to peripheral pulse pressure in ICU patients: an arterial tonometry study.  Intensive Care Med. 2007;  33 1931-1937
  • 51 Lamia B. et al. . Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity.  Intensive Care Med. 2007;  33 1125-1132
  • 52 Monnet X. et al. . Passive leg raising predicts fluid responsiveness in the critically ill.  Crit Care Med. 2006;  34 1402-1407
  • 53 Monnet X, Teboul JL.. Volume responsiveness.  Curr Opin Crit Care. 2007;  13 549-553
  • 54 Monnet X, Teboul JL.. Invasive measures of left ventricular preload.  Curr Opin Crit Care. 2006;  12 235-240
  • 55 Sandham JD. et al. . A randomized, controlled trial of the use of pulmonary–artery catheters in high–risk surgical patients.  N Engl J Med. 2003;  348 5-14
  • 57 Graf J, Janssens U.. Evidenz–basierte Intensivmedizin: Praxis, Nutzen und Bedeutung.  Anaesthesist. 2004;  53 253-262
  • 58 Janssens U, Graf J.. Was heißt EBM für die Klinik? In: Kuhlen R, Rossaint R, editors. Evidenzbasierte Medizin in Anästhesie und Intensivmedizin. Heidelberg: Springer 2006: 31-49
  • 59 Harvey S. et al. . Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC–Man): a randomised controlled trial.  Lancet. 2005;  366 472-477
  • 60 Harvey S. et al. . An evaluation of the clinical and cost–effectiveness of pulmonary artery catheters in patient management in intensive care: a systematic review and a randomised controlled trial.  Health Technol Assess. 2006;  10 1-133
  • 61 Janssens U, Graf J.. Was ist "Schock"?.  Internist. 2004;  45 258-266
  • 62 Graf J, Janssens U.. Monitoring. In: Madler, Jauch, Werdan, Sigrist, Pajonk, editors. Das Akutmedizin–Buch – Die ersten 24–Stunden. München: 1. Auflage Urban und Fischer Verlag 2005
  • 63 Graf J, Janssens U.. The early bird catches the worm.  Crit Care Med. 2005;  33 2412-2414
  • 64 Bellomo R, Uchino S.. Cardiovascular monitoring tools: use and misuse.  Curr Opin Crit Care. 2003;  9 225-229
  • 65 Nelson LD.. The new pulmonary artery catheters: continuous venous oximetry, right ventricular ejection fraction, and continuous cardiac output.  New Horiz. 1997;  5 251-258
  • 66 Diebel LN. et al. . End–diastolic volume. A better indicator of preload in the critically ill.  Arch Surg. 1992;  127 817-821
  • 67 Pinsky MR.. Functional hemodynamic monitoring.  Intensive Care Med. 2002;  28 386-388
  • 68 Reuter DA. et al. . Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery.  Intensive Care Med. 2002;  28 392-398
  • 69 Eisenberg PR. et al. . Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients.  Crit Care Med. 1984;  12 549-553
  • 70 Schlichtig R. et al. . Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery.  J Appl Physiol. 1991;  70 169-178
  • 71 Boldt J.. Clinical review: hemodynamic monitoring in the intensive care unit.  Crit Care. 2002;  6 52-59
  • 72 Bellomo R, Pinsky MR.. Invasive hemodynamic monitoring. In: Tinker, Browne, Sibbald, editors. Critical Care: Standards, Audit and Ethics. New York: Oxford University Press 1996: 82-104
  • 73 Pinsky MR.. Pulmonary artery occlusion pressure.  Intensive Care Med. 2003;  29 19-22
  • 74 Levy MM.. Pulmonary capillary pressure and tissue perfusion: clinical implications during resuscitation from shock.  New Horiz. 1996;  4 504-518

PD Dr. med. Jürgen Graf
Marc Irqsusi
Prof. Dr. med. Uwe Janssens

Email: jgraf@gmx.de

Email: uwe.janssens@sah-eschweiler.de

>