Semin Respir Crit Care Med 2008; 29(4): 335-349
DOI: 10.1055/s-2008-1081278
© Thieme Medical Publishers

Lung Biopsy: Special Techniques

Matthew D. Cham1 , Maureen E. Lane3 , Claudia I. Henschke2 , David F. Yankelevitz2
  • 1Division of Chest Imaging, Department of Radiology, Weill Cornell Medical College, New York, New York
  • 2Division of Chest Imaging, Department of Radiology and Cardiothoracic Surgery, Weill Cornell Medical College, New York, New York
  • 3Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York
Further Information

Publication History

Publication Date:
23 July 2008 (online)

ABSTRACT

Transthoracic needle biopsy of the indeterminate pulmonary nodule is a well-established, highly accurate, and minimally invasive diagnostic procedure. A pulmonary nodule in virtually any location is accessible to transthoracic needle biopsy. A solid understanding of special biopsy techniques enables the operator to overcome the commonly encountered challenges, including small, mobile, and partly obscured nodules. Because biopsy-related complications can be reduced but not completely eliminated, a familiarity with such complications and the procedures used to manage them is essential. A close partnership with the cytology team is crucial in achieving a high diagnostic accuracy during transthoracic needle biopsy. In the future, biopsy-derived microarray analysis may play a greater role in guiding treatment and predicting treatment outcomes.

REFERENCES

  • 1 Henschke C I, Yankelevitz D F, Libby D M, Pasmantier M W, Smith J P, Miettinen O S. International Early Lung Cancer Action Program Investigators . Survival of patients with stage I lung cancer detected on CT screening.  N Engl J Med. 2006;  355 1763-1771
  • 2 Manhire A, Charig M, Clelland C BTS et al. Guidelines for radiologically guided lung biopsy.  Thorax. 2003;  58 920-936
  • 3 Cox J E, Chiles C, McManus C M, Aquino S L, Choplin R H. Transthoracic needle aspiration biopsy: variables that affect risk of pneumothorax.  Radiology. 1999;  212 165-168
  • 4 Poe R H, Kallay M C, Wicks C M, Odoroff C L. Predicting risk of pneumothorax in needle biopsy of the lung.  Chest. 1984;  85 232-235
  • 5 Fish G D, Stanley J H, Miller K S, Schabel S I, Sutherland S E. Postbiopsy pneumothorax: estimating the risk by chest radiography and pulmonary function tests.  AJR Am J Roentgenol. 1988;  150 71-74
  • 6 Kazerooni E A, Lim F T, Mikhail A, Martinez F J. Risk of pneumothorax in CT-guided transthoracic needle aspiration biopsy of the lung.  Radiology. 1996;  198 371-375
  • 7 Li H, Boiselle P M, Shepard J O, Trotman-Dickenson B, McLoud T C. Diagnostic accuracy and safety of CT-guided percutaneous needle aspiration biopsy of the lung: comparison of small and large pulmonary nodules.  AJR Am J Roentgenol. 1996;  167 105-109
  • 8 García-Río F, Pino J M, Casadevall J et al.. Use of spirometry to predict risk of pneumothorax in CT-guided needle biopsy of the lung.  J Comput Assist Tomogr. 1996;  20 20-23
  • 9 Laurent F, Michel P, Latrabe V, Tunon de Lara M, Marthan R. Pneumothoraces and chest tube placement after CT-guided transthoracic lung biopsy using a coaxial technique: incidence and risk factors.  AJR Am J Roentgenol. 1999;  172 1049-1053
  • 10 Ko J P, Shepard J O, Drucker E A et al.. Factors influencing pneumothorax rate at lung biopsy: are dwell time and angle of pleural puncture contributing factors?.  Radiology. 2001;  218 491-496
  • 11 Yamagami T, Nakamura T, Iida S, Kato T, Nishimura T. Management of pneumothorax after percutaneous CT-guided lung biopsy.  Chest. 2002;  121 1159-1164
  • 12 Geraghty P R, Kee S T, McFarlane G, Razavi M K, Sze D Y, Dake M D. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate.  Radiology. 2003;  229 475-481
  • 13 Kucuk C U, Yilmaz A, Yilmaz A, Akkaya E. Computed tomography-guided transthoracic fine-needle aspiration in diagnosis of lung cancer: a comparison of single-pass needle and multiple-pass coaxial needle systems and the value of immediate cytological assessment.  Respirology. 2004;  9 392-396
  • 14 Aviram G, Schwartz D S, Meirsdorf S, Rosen G, Greif J, Graif M. Transthoracic needle biopsy of lung masses: a survey of techniques.  Clin Radiol. 2005;  60 370-374
  • 15 Yankelevitz D F, Davis S D, Chiarella D, Henschke C I. Needle-tip repositioning during computed-tomography-guided transthoracic needle aspiration biopsy of small deep pulmonary lesions: minor adjustments make a big difference.  J Thorac Imaging. 1996;  11 279-282
  • 16 Yankelevitz D F, Henschke C I, Davis S D. Angulated needle placement in CT-guided percutaneous needle biopsy of the thorax.  Clin Imaging. 1993;  17 124-125
  • 17 Yankelevitz D F, Henschke C I, Davis S D. Percutaneous CT biopsy of chest lesions: an in vitro analysis of the effect of partial volume averaging on needle positioning.  AJR Am J Roentgenol. 1993;  161 273-278
  • 18 Westcott J L. Needle biopsy of the chest. In: Tavares J, Ferrucci J Imaging—Diagnosis—Intervention. Vol 1, ch 45. Philadelphia; Lippincott 1993: 1-13
  • 19 Khouri N F, Stitik F P, Erozan Y S et al.. Transthoracic needle aspiration biopsy of benign and malignant lung lesions.  AJR Am J Roentgenol. 1985;  144 281-288
  • 20 Wallace M J, Krishnamurthy S, Broemeling L D et al.. CT-guided percutaneous fine-needle aspiration biopsy of small(< or = 1-cm) pulmonary lesions.  Radiology. 2002;  225 823-828
  • 21 Yeow K M, Tsay P K, Cheung Y C, Lui K W, Pan K T, Chou A S. Factors affecting diagnostic accuracy of CT-guided coaxial cutting needle lung biopsy: retrospective analysis of 631 procedures.  J Vasc Interv Radiol. 2003;  14 581-588
  • 22 Yeow K M, Su I H, Pan K T et al.. Risk factors of pneumothorax and bleeding: multivariate analysis of 660 CT-guided coaxial cutting needle lung biopsies.  Chest. 2004;  126 748-754
  • 23 Yankelevitz D F, Henschke C I, Koizumi J H, Altorki N K, Libby D. CT-guided transthoracic needle biopsy of small solitary pulmonary nodules.  Clin Imaging. 1997;  21 107-110
  • 24 Moore E H. Technical aspects of needle aspiration lung biopsy: a personal perspective.  Radiology. 1998;  208 303-318
  • 25 Yankelevitz D F, Davis S D, Henschke C I. Aspiration of a large pneumothorax resulting from transthoracic needle biopsy.  Radiology. 1996;  200 695-697
  • 26 Yamagami T, Kato T, Hirota T, Yoshimatsu R, Matsumoto T, Nishimura T. Usefulness and limitation of manual aspiration immediately after pneumothorax complicating interventional radiological procedures with the transthoracic approach.  Cardiovasc Intervent Radiol. 2006;  29 1027-1033
  • 27 Yankelevitz D F, Davis S D, Chiarella D A, Henschke C I. Pitfalls in CT-guided transthoracic needle biopsy of pulmonary nodules.  Radiographics. 1996;  16 1073-1084
  • 28 Tomiyama N, Yasuhara Y, Nakajima Y et al.. CT-guided needle biopsy of lung lesions: a survey of severe complication based on 9783 biopsies in Japan.  Eur J Radiol. 2006;  59 60-64
  • 29 Lang E K, Ghavami R, Schreiner V C, Archibald S, Ramirez J. Autologous blood clot seal to prevent pneumothorax at CT-guided lung biopsy.  Radiology. 2000;  216 93-96
  • 30 Moore E H, Shepard J A, McLoud T C, Templeton P A, Kosiuk J P. Positional precautions in needle aspiration lung biopsy.  Radiology. 1990;  175 733-735
  • 31 Moore E H, LeBlanc J, Montesi S A, Richardson M L, Shepard J A, McLoud T C. Effect of patient positioning after needle aspiration lung biopsy.  Radiology. 1991;  181 385-387
  • 32 Collings C L, Westcott J L, Banson N L, Lange R C. Pneumothorax and dependent versus nondependent patient position after needle biopsy of the lung.  Radiology. 1999;  210 59-64
  • 33 Cantin L, Chartrand-Lefebvre C, Samson L et al.. Lack of effect of position restriction after transthoracic biopsy.  Radiology. 2001;  219 295
  • 34 Tanisaro K. Patient positioning after fine needle lung biopsy-effect on pneumothorax rate.  Acta Radiol. 2003;  44 52-55
  • 35 Masterson A V, Haslam P, Logan P M, Lee M J. Patient positioning after lung biopsy: influence on the incidence of pneumothorax.  Can Assoc Radiol J. 2003;  54 31-34
  • 36 Vazquez M F, Yankelevitz D F. The radiologic appearance of solitary pulmonary nodules and their cytologic-histologic correlation.  Semin Ultrasound CT MR. 2000;  21 149-162
  • 37 Austin J H, Cohen M B. Value of having a cytopathologist present during percutaneous fine-needle aspiration biopsy of lung: report of 55 cancer patients and metaanalysis of the literature.  AJR Am J Roentgenol. 1993;  160 175-177
  • 38 Santambrogio L, Nosotti M, Bellaviti N, Pavoni G, Radice F, Caputo V. CT-guided fine-needle aspiration cytology of solitary pulmonary nodules: a prospective, randomized study of immediate cytologic evaluation.  Chest. 1997;  112 423-425
  • 39 Roger V, Nasiell M, Linden M, Enstead I. Cytologic differential diagnosis of bronchiolo-alveolar carcinoma and bronchogenic carcinoma.  Acta Cytol. 1976;  20 303-307
  • 40 Meyerson M, Franklin W A, Kelley M J. Molecular classification and molecular genetics of human lung cancers.  Semin Oncol. 2004;  31(1, Suppl 1) 4-19
  • 41 Nacht M, Dracheva T, Gao Y et al.. Molecular characteristics of non-small cell lung cancer.  Proc Natl Acad Sci U S A. 2001;  98 15203-15208
  • 42 Nguyen D M, Schrump D S. Lung cancer staging in the genomics era.  Thorac Surg Clin. 2006;  16 329-337
  • 43 Lane M E, Yankelevitz D F, Henschke C I et al.. Patterns of gene expression in pulmonary fine needle aspirates (FNA) with diverse radiographic appearances.  J Clin Oncol. 2004;  22(14S) 9587
  • 44 Lim E H, Aggarwal A, Agasthian T et al.. Feasibility of using low-volume tissue samples for gene expression profiling of advanced non-small cell lung cancers.  Clin Cancer Res. 2003;  9(16 Pt 1) 5980-5987
  • 45 Giacomini K M, Brett C M, Altman R B Pharmacogenetics Research Network et al. The pharmacogenetics research network: from SNP discovery to clinical drug response.  Clin Pharmacol Ther. 2007;  81 328-345
  • 46 Kiyohara C, Takayama K, Nakanishi Y. Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis.  Lung Cancer. 2006;  54 267-283
  • 47 Tebbutt S J, James A, Pare P D. Single-nucleotide polymorphisms and lung disease: clinical implications.  Chest. 2007;  131 1216-1223
  • 48 Hirsch F R, Varella-Garcia M, McCoy J Southwest Oncology Group et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study.  J Clin Oncol. 2005;  23 6838-6845
  • 49 Lynch T J, Bell D W, Sordella R et al.. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.  N Engl J Med. 2004;  350 2129-2139
  • 50 Takano T, Ohe Y, Sakamoto H et al.. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer.  J Clin Oncol. 2005;  23 6829-6837
  • 51 Angulo B, Suarez-Gauthier A, Lopez-Rios F et al.. Expression signatures in lung cancer reveal a profile for EGFR-mutant tumours and identify selective PIK3CA overexpression by gene amplification.  J Pathol. 2008;  214 347-356
  • 52 Daniele L, Macrì L, Schena M et al.. Predicting gefitinib responsiveness in lung cancer by fluorescence in situ hybridization/chromogenic in situ hybridization analysis of EGFR and HER2 in biopsy and cytology specimens.  Mol Cancer Ther. 2007;  6 1223-1229
  • 53 Sholl L M, John Iafrate A, Chou Y P et al.. Validation of chromogenic in situ hybridization for detection of EGFR copy number amplification in nonsmall cell lung carcinoma.  Mod Pathol. 2007;  20 1028-1035
  • 54 Uzawa N, Sonoda I, Myo K, Takahashi K, Miyamoto R, Amagasa T. Fluorescence in situ hybridization for detecting genomic alterations of cyclin D1 and p16 in oral squamous cell carcinomas.  Cancer. 2007;  110 2230-2239
  • 55 Zhu H, Lam D C, Han K C et al.. High resolution analysis of genomic aberrations by metaphase and array comparative genomic hybridization identifies candidate tumour genes in lung cancer cell lines.  Cancer Lett. 2007;  245 303-314
  • 56 Mariadason J M, Augenlicht L H, Arango D. Microarray analysis in the clinical management of cancer.  Hematol Oncol Clin North Am. 2003;  17 377-387
  • 57 Abdel-Aziz H O, Takasaki I, Tabuchi Y et al.. High-density oligonucleotide microarrays and functional network analysis reveal extended lung carcinogenesis pathway maps and multiple interacting genes in NNK [4-(methylnitrosamino)-1-(3-pyridyle)-1-butanone] induced CD1 mouse lung tumor.  J Cancer Res Clin Oncol. 2007;  133 107-115
  • 58 Mayburd A L, Martlínez A, Sackett D et al.. Ingenuity network-assisted transcription profiling: identification of a new pharmacologic mechanism for MK886.  Clin Cancer Res. 2006;  12 1820-1827
  • 59 Pospisil P, Iyer L K, Adelstein S J, Kassis A I. A combined approach to data mining of textual and structured data to identify cancer-related targets.  BMC Bioinformatics. 2006;  7 354
  • 60 Coulson J M, Ahmed S I, Quinn J P, Woll P J. Detection of small cell lung cancer by RT-PCR for neuropeptides, neuropeptide receptors, or a splice variant of the neuron restrictive silencer factor.  Methods Mol Med. 2003;  75 335-352
  • 61 Zhou Q H, Gong Y L, Qin Y et al.. Value of diagnosing micrometastasis by nested RT-PCR in the peripheral blood and bone marrow in non-small cell lung cancer patients.  Zhonghua Zhong Liu Za Zhi. 2003;  25 62-65
  • 62 Stark A M, Hugo H H, Tscheslog H, Mehdorn H M. p53, BCL-2 and BAX in non-small cell lung cancer brain metastases: a comparison of real-time RT-PCR, ELISA and immunohistochemical techniques.  Neurol Res. 2007;  29 435-440
  • 63 Kikuchi T, Carbone D P. Proteomics analysis in lung cancer: challenges and opportunities.  Respirology. 2007;  12 22-28

Matthew D ChamM.D. 

Division of Chest Imaging, Department of Radiology, Weill Cornell Medical College

585 East 68th St., Box 586(J-030), New York, NY 10065

Email: mac9166@med.cornell.edu

    >