Methods Inf Med 2007; 46(03): 282-286
DOI: 10.1160/ME9044
Schattauer GmbH

A Geometric Model of the Beating Heart

J. von Berg
1   Philips Research Europe – Hamburg, Sector Medical Imaging Systems, Hamburg, Germany
C. Lorenz
1   Philips Research Europe – Hamburg, Sector Medical Imaging Systems, Hamburg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
20 January 2018 (online)


Objectives : A comprehensive model of the human heart that covers multiple surfaces, like those of the four chambers and the attached vessels, is presented. It also contains the coronary arteries and a set of 25 anatomical landmarks. The statistical model is intended to provide a priori information for automated diagnostic and interventional procedures.

Methods : The end-diastolic phase of the model was adapted to fit 27 clinical multi-slice computed tomography images, thus reflecting the anatomical variability to be observed in that sample. A mean cardiac motion model was also calculated from a set of eleven multi-phase computed tomography image sets. A number of experiments were performed to determine the accuracy of model-based predictions done on unseen cardiac images.

Results : Using an additional deformable surface technique, the model allows for determination of all chambers and the attached vessels on the basis of given anatomical landmarks with an average accuracy of 1.1 mm. After such an individualization of the model by surface adaptation the centerlines of the three main coronary arteries may be estimated with an average accuracy of 5.2 mm. The mean motion model was used to estimate the cardiac phase of an unknown multislice computed tomography image.

Conclusion : The mean shape model of the human heart as presented here complements automated image analysis methods with the required a priori information about anatomical constraints to make them work fast and robustly.

  • References

  • 1 Gérard O, Collet Billon A, Rouet JM, Jacob M, Fradkin M, Allouche C. Efficient model-based quantification of left ventricular function in 3D echocardiography. IEEE Trans Med Imag 2002; 21 (09) 1059-1068.
  • 2 Zagrodsky V, Walimbe V, Castro-Pareja CR, Qin JX, Song JM, Shekhar R. Registration-assisted segmentation of real-time 3-D echocardiography data using deformable models. IEEE Trans Med Imag 2005; 24 (09) 1089-1099.
  • 3 Lorenzo-Valdès M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D. Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. Proc. of MICCAI. 2002. Springer; 642-655.
  • 4 Kaus MR, von Berg J, Weese J, Niessen W, Pekar V. Automated segmentation of the left ventricle in cardiac MRI. Med Img Anal 2004; 08 (03) 245-254.
  • 5 Dornheim L, Tönnies K, Dixon K. Automatic segmentation of the left ventricle in 3D SPECT data by registration with a dynamic anatomical model. Proc. of MICCAI. 2005. Springer; 335-342.
  • 6 Oost E, Koning G, Sonka M, Reiber HC, Lelieveldt BPF. Automated segmentation of X-ray left ventricular angiograms using multi-view active appearance models and dynamic programming. Proc. of FIMH. 2005. Springer: 23-32.
  • 7 Chen T, Metaxas D, Axel L. 3D cardiac anatomy reconstruction using high resolution CT data. Proc. of MICCAI.. 2004. Springer: 411-418.
  • 8 Frangi AF, Niessen WJ, Viergever MA. Three-dimensional modeling for functional analysis of cardiac images: A review. IEEE Trans Med Imag 2001; 20 (01) 2-25.
  • 9 Lötjönen J, Kivistö S, Koikkalainen J, Smutek D, Lauerma K. Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Med Img Anal 2004; 08 (03) 371-386.
  • 10 Sährig D, Ehrhardt J, Storck A, Bansmann MP, Lund GK, Handels H. Computer-assisted analysis of 4D cardiac MR image sequences after myocardial infarction. Methods Inf Med 2006; 45 (04) 377-383.
  • 11 von Berg J, Lorenz C. Multi-surface cardiac modelling, segmentation, and tracking. Proc. of FIMH.. 2005. Springer: 1-11.
  • 12 Marom EM, Herndon JE, Kim YH, McAdams HP. Variations in pulmonary venous drainage to the left atrium: Implications for radiofrequency ablation. Radiology 2004; 230 (03) 824-829.
  • 13 Dodge JT, Brown BG, Bolson EL, Dodge HT. Intrathoracic spatial location of specified coronary artery segments on the normal human heart. Applications in quantitative arteriography, assessment of regional risk and contraction, and anatomic display. Circulation 1988; 78 (5 Pt 1) 1167-1180.
  • 14 Movassaghi B, Rasche V, Grass M, Viergever MA, Niessen WJ. A quantitative analysis of 3-D coronary modeling from two or more projection images. IEEE Trans Med Imag 2004; 23 (12) 1517-1531.
  • 15 Wierzbicki M, Drangova M, Guiraudon G, Peters T. Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries. Med Img Anal 2004; 08 (03) 387-401.
  • 16 Montagnat J, Delingette H. 4D deformable models with temporal constraints: application to 4D cardiac image segmentation. Med Img Anal 2005; 09 (01) 87-100.
  • 17 Perperidis D, Mohiaddin R, Rueckert D. Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. Proc. of MICCAI.. 2005. Springer; 402-410.
  • 18 Lorenz C, von Berg J, Bülow T, Renisch S, Wergandt S. Modeling the coronary artery tree. Proc. of Shape Modeling International 2004. IEEE Comput Soc.. 354-357.
  • 19 McInerney T, Terzopoulos D. Deformable models in medical image analysis: A survey. Med Img Anal 1996; 01 (02) 91-108.
  • 20 Ecabert O, Peters J, Lorenz C, von Berg J, Vembar M, Subramanyan K, Weese J. Towards automatic full heart segmentation in computed-tomography images. Computers in Cardiology. 2005. IEEE; 223-226.