Thromb Haemost 2004; 92(03): 467-477
DOI: 10.1160/TH04-05-0307
Theme Issue Article
Schattauer GmbH

Mouse models of thrombosis: thrombomodulin

Hartmut Weiler
1   Blood Research Institute, Blood Center of Southeastern Wisconsin, Medical College of Wisconsin, Department of Physiology, Milwaukee, Wisconsin, USA
› Author Affiliations
Further Information

Publication History

Received 23 March 2004

Accepted after revision 28 June 2004

Publication Date:
30 November 2017 (online)

Summary

This review describes animal models of TM-deficiency that cause thrombosis in mice. Thrombomodulin (TM) is a key component of the protein C anticoagulant pathway by facilitating the activation of protein C by thrombin. In addition, TM integrates fibrinolytic and anti-inflammatory responses in a manner that is in part independent of protein C and thrombin. A series of genetically modified mouse strains is available in which the various and distinct functions of TM have been altered by means of site-directed mutagenesis of the TM gene locus (Thbd). The focus of the current review is the pathological activation of the hemostatic mechanism in mice with altered TM function (the pathologic activation of the hemostatic mechanism). The analysis of these mouse models has revealed novel and in part organ-specific functions of TM, most notably in the vascular bed of the placenta. In these mouse models, the severity and phenotypic expression of thrombosis is highly variable and is dependent on interaction with secondary genetic or environmental modifiers. The mutant mouse strains replicate important aspects of thrombophilia and thrombosis in humans, and provide a valuable resource to validate existing, and develop novel concepts of disease mechanisms in human patients.

 
  • References

  • 1 Dittman WA, Majerus PW. Structure and function of thrombomodulin: a natural anticoagulant. Blood 1990; 75: 329-36.
  • 2 Sadler JE. Thrombomodulin structure and function. Thromb Haemost 1997; 78: 392-5.
  • 3 Esmon CT, Gu JM, Xu J. et al. Regulation and functions of the protein C anticoagulant pathway. Haematologica 1999; 84: 363-8.
  • 4 Esmon CT. The normal role of Activated Protein C in maintaining homeostasis and its relevance to critical illness. Crit Care 2001; 05: S7-S12.
  • 5 Taylor Jr. FB, Peer GT, Lockhart MS. et al. Endothelial cell protein C receptor plays an important role in protein C activation in vivo . Blood 2001; 97: 1685-8.
  • 6 Xu J, Esmon NL, Esmon CT. Reconstitution of the human endothelial cell protein C receptor with thrombomodulin in phosphatidylcholine vesicles enhances protein C activation. J Biol Chem 1999; 274: 6704-10.
  • 7 Crawley JT, Gu JM, Ferrell G. et al. Distribution of endothelial cell protein C/activated protein C receptor (EPCR) during mouse embryo development. Thromb Haemost 2002; 88: 259-66.
  • 8 Laszik Z, Mitro A, Taylor Jr. FB. et al. Human protein C receptor is present primarily on endothelium of large blood vessels: implications for the control of the protein C pathway. Circulation 1997; 96: 3633-40.
  • 9 Broze Jr. GJ, Higuchi DA. Coagulationdependent inhibition of fibrinolysis: role of carboxypeptidase-U and the premature lysis of clots from hemophilic plasma. Blood 1996; 88: 3815-23.
  • 10 Nesheim M, Wang W, Boffa M. et al. Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb Haemost 1997; 78: 386-91.
  • 11 Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol 2000; 20: 2511-8.
  • 12 Myles T, Nishimura T, Yun TH. et al. Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. J Biol Chem 2003; 278: 51059-67.
  • 13 Campbell W, Okada N, Okada H. Carboxypeptidase R is an inactivator of complementderived inflammatory peptides and an inhibitor of fibrinolysis. Immunol Rev 2001; 180: 162-7.
  • 14 Campbell WD, Lazoura E, Okada N. et al. Inactivation of C3a and C5a octapeptides by carboxypeptidase R and carboxypeptidase N. Microbiol Immunol 2002; 46: 131-4.
  • 15 Riewald M, Petrovan RJ, Donner A. et al. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 2002; 296: 1880-2.
  • 16 Riewald M, Ruf W. Orchestration of coagulation protease signaling by tissue factor. Trends Cardiovasc Med 2002; 12: 149-54.
  • 17 Jackman RW, Beeler DL, VanDeWater L. et al. Characterization of a thrombomodulin cDNA reveals structural similarity to the low density lipoprotein receptor. Proc Natl Acad Sci U S A 1986; 83: 8834-8.
  • 18 Wood MJ, Sampoli BABenitez. et al. Solution structure of the smallest cofactor-active fragment of thrombomodulin. Nat Struct Biol 2000; 07: 200-4.
  • 19 Fuentes-Prior P, Iwanaga Y, Huber R. et al. Structural basis for the anticoagulant activity of the thrombin- thrombomodulin complex. Nature 2000; 404: 518-25.
  • 20 Christian S, Ahorn H, Koehler A. et al. Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J Biol Chem 2001; 276: 7408-14.
  • 21 Petersen TE. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett 1988; 231: 51-3.
  • 22 Dean YD, McGreal EP, Akatsu H. et al. Molecular and cellular properties of the rat AA4 antigen, a C-type lectin-like receptor with structural homology to thrombomodulin. J Biol Chem 2000; 275: 34382-92.
  • 23 Conway EM, Pollefeyt S, Collen D. et al. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood 1997; 89: 652-61.
  • 24 Zhang Y, Weiler-Guettler H, Chen J. et al. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest 1998; 101: 1301-9.
  • 25 Conway EM, Van de Wouwer M, Pollefeyt S. et al. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 2002; 196: 565-77.
  • 26 Weisel JW, Nagaswami C, Young TA. et al. The shape of thrombomodulin and interactions with thrombin as determined by electron microscopy. J Biol Chem 1996; 271: 31485-90.
  • 27 Bourin MC, Boffa MC, Bjork I. et al. Functional domains of rabbit thrombomodulin. Proc Natl Acad Sci U S A 1986; 83: 5924-8.
  • 28 Bourin MC, Lundgren-Akerlund E, Lindahl U. Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J Biol Chem 1990; 265: 15424-31.
  • 29 Sadler JE, Lentz SR, Sheehan JP. et al. Structure-function relationships of the thrombin-thrombomodulin interaction. Haemostasis 1993; 23 (Suppl. 01) 183-93.
  • 30 Tsiang M, Lentz SR, Sadler JE. Functional domains of membrane-bound human thrombomodulin. EGF-like domains four to six and the serine/threonine-rich domain are required for cofactor activity. J Biol Chem 1992; 267: 6164-70.
  • 31 Kokame K, Zheng X, Sadler JE. Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J Biol Chem 1998; 273: 12135-9.
  • 32 Leung LL, Hall SW. Dissociation of thrombin’s substrate interactions using site-directed mutagenesis. Trends Cardiovasc Med 2000; 10: 89-92.
  • 33 Hall SW, Nagashima M, Zhao L. et al. Thrombin interacts with thrombomodulin, protein C, and thrombin- activatable fibrinolysis inhibitor via specific and distinct domains. J Biol Chem 1999; 274: 25510-16.
  • 34 Wang W, Nagashima M, Schneider M. et al. Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation. J Biol Chem 2000; 275: 22942-7.
  • 35 Preissner KT, Koyama T, Muller D. et al. Domain structure of the endothelial cell receptor thrombomodulin as deduced from modulation of its anticoagulant functions. Evidence for a glycosaminoglycan-dependent secondary binding site for thrombin. J Biol Chem 1990; 265: 4915-22.
  • 36 Ye J, Esmon CT, Johnson AE. The chondroitin sulfate moiety of thrombomodulin binds a second molecule of thrombin. J Biol Chem 1993; 268: 2373-9.
  • 37 Rabhi-Sabile S, Steiner-Mosonyi M, Pollefeyt S. et al. Plasmodium falciparum-infected erythrocytes: a mutational analysis of cytoadherence via murine thrombomodulin. Thromb Haemost 1999; 81: 815-21.
  • 38 Gysin J, Pouvelle B, Le Tonqueze M. et al. Chondroitin sulfate of thrombomodulin is an adhesion receptor for Plasmodium falciparuminfected erythrocytes. Mol Biochem Parasitol 1997; 88: 267-71.
  • 39 Hamada H, Ishii H, Sakyo K. et al. The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood 1995; 86: 225-33.
  • 40 Lane DA, Grant PJ. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 2000; 95: 1517-32.
  • 41 Hajjar KA. Factor V Leiden – an unselfish gene?. N Engl J Med 1994; 331: 1585-7.
  • 42 Majerus PW. Human genetics. Bad blood by mutation. Nature 1994; 369: 14-15.
  • 43 Kerlin BA, Yan SB, Isermann BH. et al. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 2003; 102: 3085-92.
  • 44 Kunz G, Ohlin AK, Adami A. et al. Naturally occurring mutations in the thrombomodulin gene leading to impaired expression and function. Blood 2002; 09 (09) 3646-53.
  • 45 Salomaa V, Matei C, Aleksic N. et al. Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a casecohort study. Lancet 1999; 353: 1729-34.
  • 46 Healy AM, Rayburn HB, Rosenberg RD. et al. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci USA 1995; 92: 850-4.
  • 47 Weiler-Guettler H, Aird WC, Husain M. et al. Targeting of transgene expression to the vascular endothelium of mice by homologous recombination at the thrombomodulin locus. Circ Res 1996; 78: 180-7.
  • 48 Weiler-Guettler H, Aird WC, Rayburn H. et al. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development 1996; 122: 2271-81.
  • 49 Isermann B, Hendrickson SB, Zogg M. et al. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest 2001; 108: 537-46.
  • 50 Weiler-Guettler H, Christie PD, Beeler DL. et al. A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. J Clin Invest 1998; 101: 1983-91.
  • 51 Weiler H, Lindner V, Kerlin B. et al. Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol 2001; 21: 1531-7.
  • 52 Conway EM, Pollefeyt S, Cornelissen J. et al. Structure-function analyses of thrombomodulin by gene-targeting in mice: the cytoplasmic domain is not required for normal fetal development. Blood 1999; 93: 3442-50.
  • 53 Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med 2001; 345: 1400-8.
  • 54 Rossant J, Cross JC. Placental development: lessons from mouse mutants. Nat Rev Genet 2001; 02: 538-48.
  • 55 Rinkenberger J, Werb Z. The labyrinthine placenta. Nat Genet 2000; 25: 248-50.
  • 56 Adamson SL, Lu Y, Whiteley KJ. et al. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol 2002; 250: 358-73.
  • 57 Pijnenborg R, Robertson WB, Brosens I. et al. Review article: trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta 1981; 02: 71-91.
  • 58 Isermann B, Hendrickson SB, Hutley K. et al. Tissue-restricted expression of thrombomodulin in the placenta rescues thrombomodulindeficient mice from early lethality and reveals a secondary developmental block. Development 2001; 128: 827-38.
  • 59 Isermann B, Sood R, Pawlinski R. et al. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med 2003; 09: 331-7.
  • 60 Preston FE, Rosendaal FR, Walker ID. et al. Increased fetal loss in women with heritable thrombophilia. Lancet 1996; 348: 913-6.
  • 61 Martinelli I, Taioli E, Cetin I. et al. Mutations in coagulation factors in women with unexplained late fetal loss. N Engl J Med 2000; 343: 1015-8.
  • 62 Kupferminc MJ, Eldor A, Steinman N. et al. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N Engl J Med 1999; 340: 9-13.
  • 63 Franchi F, Biguzzi E, Cetin I. et al. Mutations in the thrombomodulin and endothelial protein C receptor genes in women with late fetal loss. Br J Haematol 2001; 114: 641-6.
  • 64 Rey E, Kahn SR, David M. et al. Thrombophilic disorders and fetal loss: a meta-analysis. Lancet 2003; 361: 901-8.
  • 65 Cook CL, Pridham DD. Recurrent pregnancy loss. Curr Opin Obstet Gynecol 1995; 07: 357-66.
  • 66 Younis JS, Samueloff A. Gestational vascular complications. Best Pract Res Clin Haematol 2003; 16: 135-51.
  • 67 Eldor A. Thrombophilia, thrombosis and pregnancy. Thromb Haemost 2001; 86: 104-11.
  • 68 Roberts D, Schwartz RS. Clotting and hemorrhage in the placenta – a delicate balance. N Engl J Med 2002; 347: 57-9.
  • 69 Many A, Schreiber L, Rosner S. et al. Pathologic features of the placenta in women with severe pregnancy complications and thrombophilia. Obstet Gynecol 2001; 98: 1041-4.
  • 70 Sikkema JM, Franx A, Bruinse HW. et al. Placental pathology in early onset pre-eclampsia and intra-uterine growth restriction in women with and without thrombophilia. Placenta 2002; 23: 337-42.
  • 71 Mousa HA, Alfirevic Z. Do placental lesions reflect thrombophilia state in women with adverse pregnancy outcome?. Hum Reprod 2000; 15: 1830-3.
  • 72 Vern TZ, Alles AJ, Kowal-Vern A. et al. Frequency of factor V(Leiden) and prothrombin G20210A in placentas and their relationship with placental lesions. Hum Pathol 2000; 31: 1036-43.
  • 73 Abbott BD, Buckalew AR. Placental defects in ARNT-knockout conceptus correlate with localized decreases in VEGF-R2, Ang-1, and Tie-2. Dev Dyn 2000; 219: 526-38.
  • 74 Dunk C, Shams M, Nijjar S. et al. Angiopoietin-1 and angiopoietin-2 activate trophoblast Tie-2 to promote growth and migration during placental development. Am J Pathol 2000; 156: 2185-99.
  • 75 Goldman-Wohl DS, Ariel I, Greenfield C. et al. Tie-2 and angiopoietin-2 expression at the fetal-maternal interface: a receptor ligand model for vascular remodelling. Mol Hum Reprod 2000; 06: 81-7.
  • 76 Zhou Y, Fisher SJ, Janatpour M. et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion?. J Clin Invest 1997; 99: 2139-51.
  • 77 Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome?. J Clin Invest 1997; 99: 2152-64.
  • 78 Nagashima M, Yin ZF, Zhao L. et al. Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life. J Clin Invest 2002; 109: 101-10.
  • 79 te Velde EA, Wagenaar GT, Reijerkerk A. et al. Impaired healing of cutaneous wounds and colonic anastomoses in mice lacking thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2003; 01: 2087-96.
  • 80 Levi M, Dorffler-Melly J, Reitsma P. et al. Aggravation of endotoxin-induced disseminated intravascular coagulation and cytokine activation in heterozygous protein-C-deficient mice. Blood 2003; 101: 4823-7.
  • 81 Dorffler-Melly J, de Kruif M, Schwarte LA. et al. Functional thrombomodulin deficiency causes enhanced thrombus growth in a murine model of carotid artery thrombosis. Basic Res Cardiol 2003; 98: 347-52.
  • 82 Healy AM, Hancock WW, Christie PD. et al. Intravascular coagulation activation in a murine model of thrombomodulin deficiency: effects of lesion size, age, and hypoxia on fibrin deposition. Blood 1998; 92: 4188-97.
  • 83 Christie PD, Edelberg JM, Picard MH. et al. A murine model of myocardial microvascular thrombosis. J Clin Invest 1999; 104: 533-9.
  • 84 Kerlin B, Cooley BC, Isermann BH. et al. Cause-effect relation between hyperfibrinogenemia and vascular disease. Blood 2004; 103: 1728-34.
  • 85 Jalbert LR, Rosen ED, Moons L. et al. Inactivation of the gene for anticoagulant protein C causes lethal perinatal consumptive coagulopathy in mice. J Clin Invest 1998; 102: 1481-8.
  • 86 Gu JM, Crawley JT, Ferrell G. et al. Disruption of the endothelial cell protein C receptor gene in mice causes placental thrombosis and early embryonic lethality. J Biol Chem 2002; 277: 43335-43.
  • 87 Cui J, Eitzman DT, Westrick RJ. et al. Spontaneous thrombosis in mice carrying the factor V Leiden mutation. Blood 2000; 96: 4222-6.