Thromb Haemost 2011; 105(03): 409-420
DOI: 10.1160/TH10-10-0662
Review Article
Schattauer GmbH

CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke

Marisol Mirabelli-Badenier*
1   Child Neurology and Psychiatry Unit, G. Gaslini Institute and University of Genoa, Genoa, Italy
,
Vincent Braunersreuther*
2   Division of Cardiology, Foundation for Medical Researches, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
,
Giorgio Luciano Viviani
3   Department of Internal Medicine, Adult Diabetes Centre, University of Genoa, Italy
,
Franco Dallegri
4   First Medical Clinic, Laboratory of Phagocyte Physiopathology and Inflammation, Department of Internal Medicine, University of Genoa, Italy
,
Alessandra Quercioli
2   Division of Cardiology, Foundation for Medical Researches, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
,
Edvige Veneselli
1   Child Neurology and Psychiatry Unit, G. Gaslini Institute and University of Genoa, Genoa, Italy
,
François Mach
2   Division of Cardiology, Foundation for Medical Researches, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
,
Fabrizio Montecucco
2   Division of Cardiology, Foundation for Medical Researches, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
› Author Affiliations
Financial support: This work was funded by EU FP7, Grant number 201668, AtheroRemo, supported grants from the Swiss National Science Foundation (#310030–118245), De Reuter Foundation and Boninchi Foundation to Dr. F. Mach. This work was founded by the “Sir Jules Thorn Trust Reg” fund and Gustave and Simone Prévot fund to Dr. F. Montecucco.
Further Information

Publication History

Received: 18 October 2010

Accepted after minor revision: 30 November 2010

Publication Date:
27 November 2017 (online)

Summary

The definition of ischaemic stroke has been recently updated as an acute episode of neurological dysfunction caused by focal brain, spinal cord, or retinal ischaemia in the presence of a cerebral infarction. This “tissular” definition has highlighted the importance of pathophysiological processes underlying cerebral damage. In particular, post-ischaemic inflammation in the brain and in the blood stream could influence crucial steps of the tissue injury/repair cascade. CC and CXC chemokines orchestrate the inflammatory response in atherosclerotic plaque vulnerability and cerebral infarction. These molecules exert their activities through the binding to selective transmembrane receptors. CC and CXC chemokines modulate crucial processes (such as inflammatory cell recruitment and activation, neuronal survival, neoangio-genesis). On the other hand, CXC chemokines could also modulate stem cell homing, thus favouring tissue repair. Given this evidence, both CC and CXC chemokines could represent promising therapeutic targets in primary and secondary prevention of ischaemic stroke. Only preliminary studies have been performed investigating treatments with selective chemokine agonists/antagonists. In this review, we will update evidence on the role and the potential therapeutic strategies targeting CC and CXC chemokines in the pathophysiology of ischaemic stroke.

* These authors equally contributed as first authors to this work.


 
  • References

  • 1 Flynn RW, MacWalter RS, Doney AS. The cost of cerebral ischaemia. Neuropharmacology 2008; 55: 250-256.
  • 2 Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 2009; 7: 97.
  • 3 Tuttolomondo A, Di Raimondo D, di Sciacca R. et al. Inflammatory cytokines in acute ischemic stroke. Curr Pharm Des 2008; 14: 3574-3589.
  • 4 Laing KJ, Secombes CJ. Chemokines. Devel Comp Immunol 2004; 28: 443-460.
  • 5 Murphy PM. International Union of Pharmacology. XXX. Update on Chemokine Receptor. Nomenclature Pharmacol Rev 2002; 54: 227-229.
  • 6 Fernandez EJ, Lolis E. Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 2002; 42: 469-499.
  • 7 Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discov 2010; 9: 141-153.
  • 8 Zernecke A, Weber C. Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res 2010; 86: 192-201.
  • 9 Soehnlein O, Zernecke A, Weber C. Neutrophils launch monocyte extravasation by release of granule proteins. Thromb Haemost 2009; 102: 198-205.
  • 10 Ransohoff RM, Liu L, Cardona AE. Chemokines and chemokine receptors: multi-purpose players in neuroinflammation. Int Rev Neurobiol 2007; 82: 187-204.
  • 11 Montecucco F, Lenglet S, Gayet-Ageron A. et al. Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke 2010; 41: 1394-1404.
  • 12 Ottonello L, Montecucco F, Bertolotto M. et al. CCL3 (MIP-1alpha) induces in vitro migration of GM-CSF-primed human neutrophils via CCR5-dependent activation of ERK 1/2. Cell Signal 2005; 17: 355-363.
  • 13 Montecucco F, Burger F, Mach F. et al. CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. Am J Physiol Heart Circ Physiol 2008; 294: H1145-H1155.
  • 14 Montecucco F, Steffens S, Burger F. et al. Tumor necrosis factor-alpha (TNF-alpha) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1alpha) on human neutrophils through defined signalling pathways. Cell Signal 2008; 20: 557-568.
  • 15 Montecucco F, Bianchi G, Bertolotto M. et al. Insulin primes human neutrophils for CCL3-induced migration: crucial role for JNK 1/2. Ann NY Acad Sci 2006; 1090: 399-407.
  • 16 Steffens S, Montecucco F, Mach F. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury. Thromb Haemost 2009; 102: 240-247.
  • 17 Piccinin S, Di Angelantonio S, Piccioni A. et al. CX(3)CL1-induced modulation at CA1 synapses reveals multiple mechanisms of EPSC modulation involving adenosine receptor subtypes. J Neuroimmunol 2010; 224: 85-92.
  • 18 Peng H, Kolb R, Kennedy JE. et al. Differential expression of CXCL12 and CXCR4 during human fetal neural progenitor cell differentiation. J Neuroimmune Pharmacol 2007; 2: 251-258.
  • 19 Cartier L, Hartley O, Dubois-Dauphin M. et al. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 2005; 48: 16-42.
  • 20 Hamann I, Zipp F, Infante-Duarte C. Therapeutic targeting of chemokine signaling in Multiple Sclerosis. J Neurol Sci 2008; 274: 31-38.
  • 21 Padovani-Claudio DA, Liu L, Ransohoff RM. et al. Alterations in the oligodendrocyte lineage, myelin, and white matter in adult mice lacking the chemokine receptor CXCR2. Glia 2006; 54: 471-483.
  • 22 Gaupp S, Pitt D, Kuziel WA. et al. Experimental autoimmune encephalomyelitis (EAE) in CCR2(-/-) mice: susceptibility in multiple strains. Am J Pathol 2003; 162: 139-150.
  • 23 Hesselgesser J, Horuk R. Chemokine and chemokine receptor expression in the central nervous system. J Neurovirol 1999; 5: 13-26.
  • 24 Brettschneider J, Czerwoniak A, Senel M. et al. The Chemokine CXCL13 Is a Prognostic Marker in Clinically Isolated Syndrome (CIS). PLoS One. 2010 5: pii:e11986.
  • 25 Hickman SE, El Khoury J. Mechanisms of mononuclear phagocyte recruitment in Alzheimer‘s disease. CNS Neurol Disord Drug Targets 2010; 9: 168-173.
  • 26 Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 2010; 7: 22-30.
  • 27 Kadhim HJ, Duchateau J, Sébire G. Cytokines and brain injury: invited review. J Intensive Care Med 2008; 23: 236-249.
  • 28 Wahlgren CM, Zheng W, Shaalan W. et al. Human carotid plaque calcification and vulnerability. Relationship between degree of plaque calcification, fibrous cap inflammatory gene expression and symptomatology. Cerebrovasc Dis 2009; 27: 193-200.
  • 29 Zhong L, Chen WQ, Ji XP. et al. Dominant-negative mutation of monocyte chemoattractant protein-1 prevents vulnerable plaques from rupture in rabbits independent of serum lipid levels. J Cell Mol Med 2008; 12: 2362-2371.
  • 30 Ikeda U, Matsui K, Murakami Y. et al. Monocyte chemoattractant protein-1 and coronary artery disease. Clin Cardiol 2002; 25: 143-147.
  • 31 Ohman MK, Eitzman DT. Targeting MCP-1 to reduce vascular complications of obesity. Recent Pat Cardiovasc Drug Discov 2009; 4: 164-176.
  • 32 Yamagami S, Tamura M, Hayashi M. et al. Differential production of MCP-1 and cytokine-induced neutrophil chemoattractant in the ischemic brain after transient focal ischemia in rats. J Leukoc Biol 1999; 65: 744-749.
  • 33 Wang X, Yue TL, Barone FC. et al. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke 1995; 26: 661-665.
  • 34 Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 2010; 7: 77-86.
  • 35 Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 2008; 8: 802-815.
  • 36 Urra X, Villamor N, Amaro S. et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab 2009; 29: 994-1002.
  • 37 Losy J, Zaremba J. Monocyte chemoattractant protein-1 is increased in the cerebrospinal fluid of patients with ischemic stroke. Stroke 2001; 32: 2695-2696.
  • 38 Zaremba J, Ilkowski J, Losy J. Serial measurements of levels of the chemokines CCL2, CCL3 and CCL5 in serum of patients with acute ischaemic stroke. Folia Neuropathol 2006; 44: 282-289.
  • 39 Hughes PM, Allegrini PR, Rudin M. et al. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 2002; 22: 308-317.
  • 40 Schilling M, Strecker JK, Schäbitz WR. et al. Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 2009; 161: 806-812.
  • 41 Minami M, Satoh M. Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci 2003; 74: 321-327.
  • 42 Dimitrijevic OB, Stamatovic SM, Keep RF. et al. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 2007; 38: 1345-1353.
  • 43 Chen Y, Hallenbeck JM, Ruetzler C. et al. Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab 2003; 23: 748-755.
  • 44 Wang L, Li Y, Chen J. et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol 2002; 30: 831-836.
  • 45 Yan YP, Sailor KA, Lang BT. et al. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab 2007; 27: 1213-1224.
  • 46 Jiang L, Newman M, Saporta S. et al. MIP-1alpha and MCP-1 Induce Migration of Human Umbilical Cord Blood Cells in Models of Stroke. Curr Neurovasc Res 2008; 5: 118-124.
  • 47 Cheng SS, Lai JJ, Lukacs NW, Kunkel SL. Granulocyte-macrophage colony stimulating factor up-regulates CCR1 in human neutrophils. J Immunol 2001; 166: 1178-1184.
  • 48 Cowell RM, Xu H, Galasso JM. et al. Hypoxic-ischemic injury induces macrophage inflammatory protein-1alpha expression in immature rat brain. Stroke 2002; 33: 795-801.
  • 49 Kim JS, Gautam SC, Chopp M. et al. Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. J Neuroimmunol 1995; 56: 127-134.
  • 50 Takami S, Nishikawa H, Minami M. et al. Induction of macrophage inflammatory protein MIP-1alpha mRNA on glial cells after focal ischemia in the rat. Neurosci Lett 1997; 227: 173-176.
  • 51 Takami S, Minami M, Nagata I. et al. Chemokine receptor antagonist peptide, viral MIP-II, protects the brain against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2001; 21: 1430-1435.
  • 52 Deshmane SL, Kremlev S, Amini S. et al. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29: 313-326.
  • 53 Reichel CA, Rehberg M, Lerchenberger M. et al.. Ccl2 and Ccl3 mediate neutro-phil recruitment via induction of protein synthesis and generation of lipid mediators. Arterioscler Thromb Vasc Biol 2009; 29: 1787-1793.
  • 54 Hau S, Reich DM, Scholz M. et al. Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neurosci 2008; 9: 30.
  • 55 Tatara Y, Ohishi M, Yamamoto K. et al. Macrophage inflammatory protein-1beta induced cell adhesion with increased intracellular reactive oxygen species. J Mol Cell Cardiol 2009; 47: 104-111.
  • 56 Braunersreuther V, Zernecke A, Arnaud C. et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2007; 27: 373-379.
  • 57 Braunersreuther V, Steffens S, Arnaud C. et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol 2008; 28: 1090-1096.
  • 58 Braunersreuther V, Pellieux C, Pelli G. et al. Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice. J Mol Cell Cardiol 2010; 48: 789-798.
  • 59 Koenen RR, von Hundelshausen P, Nesmelova IV. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 2009; 15: 97-103.
  • 60 Terao S, Yilmaz G, Stokes KY. et al. Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemiareperfusion. Stroke 2008; 39: 2560-2570.
  • 61 Ubogu EE, Callahan MK, Tucky BH. et al. CCR5 expression on monocytes and T cells: modulation by transmigration across the blood-brain barrier in vitro. Cell Immunol 2006; 243: 19-29.
  • 62 Shahrara S, Park CC, Temkin V. et al. RANTES modulates TLR4-induced cytokine secretion in human peripheral blood monocytes. J Immunol 2006; 177: 5077-5087.
  • 63 Spleiss O, Gourmala N, Boddeke HW. et al. Cloning of rat HIV-1-chemokine coreceptor CKR5 from microglia and upregulation of its mRNA in ischemic and endotoxinemic rat brain. J Neurosci Res 1998; 53: 16-28.
  • 64 Simeoni E, Winkelmann BR, Hoffmann MM. et al. Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis. Eur Heart J 2004; 25: 1438-1446.
  • 65 Um JY, Kim HM. Polymorphisms of RANTES and IL-4 genes in cerebral infarction. J Mol Neurosci 2009; 37: 1-5.
  • 66 Afzal AR, Kiechl S, Daryani YP. et al. Common CCR5-del32 frameshift mutation associated with serum levels of inflammatory markers and cardiovascular disease risk in the Bruneck population. Stroke 2008; 39: 1972-1978.
  • 67 Kostulas N, Markaki I, Kostulas V. et al. Common CCR 5 polymorphism in stroke: the CCR 5 delta32 polymorphism differentiates cardioembolism from other aetiologies of ischaemic cerebrovascular diseases. Scand J Immunol 2009; 70: 475-480.
  • 68 Sorce S, Bonnefont J, Julien S. et al. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5. Br J Pharmacol 2010; 160: 311-321.
  • 69 Rostène W, Kitabgi P, Parsadaniantz SM. Chemokines: a new class of neuromodulator?. Nat Rev Neurosci 2007; 8: 895-903.
  • 70 Wang X, Li X, Yaish-Ohad S. et al. Molecular cloning and expression of the rat monocyte chemotactic protein-3 gene: a possible role in stroke. Brain Res Mol Brain Res 1999; 71: 304-312.
  • 71 Terao Y, Ohta H, Oda A. et al. Macrophage inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia. Neurosci Res 2009; 64: 75-82.
  • 72 Ohta H, Terao Y, Shintani Y. et al. Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia. Neurosci Res 2007; 57: 424-433.
  • 73 Shannon LA, Calloway PA, Welch TP. et al. CCR7/CCL21 migration on fibronectin is mediated by PLC{gamma}1 and ERK1/2 in primary T lymphocytes. J Biol Chem. 2010 prepub online doi:10.1074/jbc.M110.152173.
  • 74 Biber K, Sauter A, Brouwer N. et al. Ischemia-induced neuronal expression of the microglia attracting chemokine Secondary Lymphoid-tissue Chemokine (SLC). Glia 2001; 34: 121-133.
  • 75 Montecucco F, Lenglet S, Braunersreuther V. et al. Single administration of the CXC chemokine-binding protein Evasin-3 during ischemia prevents myocardial reperfusion injury in mice. Arterioscler Thromb Vasc Biol 2010; 30: 1371-1377.
  • 76 Grau AJ, Reis A, Buggle F. et al. Monocyte function and plasma levels of interleukin-8 in acute ischemic stroke. J Neurol Sci 2001; 192: 41-47.
  • 77 Tarkowski E, Rosengren L, Blomstrand C. et al. Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol 1997; 110: 492-499.
  • 78 Yamasaki Y, Matsuo Y, Matsuura N. et al. Transient increase of cytokine-induced neutrophil chemoattractant, a member of the interleukin-8 family, in ischemic brain areas after focal ischemia in rats. Stroke 1995; 26: 318-322.
  • 79 Villa P, Triulzi S, Cavalieri B. et al. The interleukin-8 (IL-8/CXCL8) receptor inhibitor reparixin improves neurological deficits and reduces long-term inflammation in permanent and transient cerebral ischemia in rats. Mol Med 2007; 13: 125-133.
  • 80 Enquobahrie DA, Smith NL, Bis JC. et al. Cholesterol ester transfer protein, inter-leukin-8, peroxisome proliferator activator receptor alpha, and Toll-like receptor 4 genetic variations and risk of incident nonfatal myocardial infarction and ischemic stroke. Am J Cardiol 2008; 101: 1683-1688.
  • 81 Zaremba J, Skrobanski P, Losy J. The level of chemokine CXCL5 in the cerebrospinal fluid is increased during the first 24 hours of ischaemic stroke and correlates with the size of early brain damage. Folia Morphol (Warsz) 2006; 65: 1-5.
  • 82 Losy J, Zaremba J, Skrobanski P. CXCL1 (GRO-alpha) chemokine in acute ischaemic stroke patients. Folia Neuropathol 2005; 43: 97-102.
  • 83 Schmerbach K, Schefe JH, Krikov M. et al. Comparison between single and combined treatment with candesartan and pioglitazone following transient focal ischemia in rat brain. Brain Res 2008; 1208: 225-233.
  • 84 Wang Y, Luo W, Stricker R. et al. Protease-activated receptor-1 protects rat astrocytes from apoptotic cell death via JNK-mediated release of the chemokine GRO/ CINC-1. J Neurochem 2006; 98: 1046-1060.
  • 85 Li M, Yu J, Li Y. et al. CXCR4 positive bone mesenchymal stem cells migrate to human endothelial cell stimulated by ox-LDL via SDF-1alpha/CXCR4 signaling axis. Exp Mol Pathol 2010; 88: 250-255.
  • 86 Sokolov VO, Krasnikova TL, Prokofieva LV. et al. Expression of markers of regulatory CD4+CD25+foxp3+ cells in atherosclerotic plaques of human coronary arteries. Bull Exp Biol Med 2009; 147: 726-729.
  • 87 Patel JR, McCandless EE, Dorsey D. et al. CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci USA 2010; 107: 11062-11067.
  • 88 Li M, Ransohoff RM. Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol 2008; 84: 116-131.
  • 89 Schönemeier B, Schulz S, Hoellt V. et al. Enhanced expression of the CXCl12/SDF-1 chemokine receptor CXCR7 after cerebral ischemia in the rat brain. J Neuroimmunol 2008; 198: 39-45.
  • 90 Hill WD, Hess DC, Martin-Studdard A. et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 2004; 63: 84-96.
  • 91 Cui X, Chen J, Zacharek A. et al. Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells 2007; 25: 2777-2785.
  • 92 Imitola J, Raddassi K, Park KI. et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004; 101: 18117-18122.
  • 93 Robin AM, Zhang ZG, Wang L. et al. Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab 2006; 26: 125-134.
  • 94 Fan Y, Shen F, Frenzel T. et al. Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol 2010; 67: 488-497.
  • 95 Wang Y, Deng Y, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 2008; 1195: 104-112.
  • 96 Shyu WC, Liu DD, Lin SZ. et al. Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest 2008; 118: 2482-2495.
  • 97 Bakondi B, Shimada IS, Peterson BM. et al. SDF-1 secreted by human CD133-derived MSCs promotes neural progenitor cell survival through CXCR7. Stem Cells Dev. 2010 preprint online doi:10.1089/scd.2010.0198.
  • 98 Vergote D, Butler GS, Ooms M. et al. Proteolytic processing of SDF-1alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proc Natl Acad Sci USA 2006; 103: 19182-19187.
  • 99 Proudfoot AE, Power CA, Schwarz MK. Anti-chemokine small molecule drugs: a promising future?. Expert Opin Investig Drugs 2010; 19: 345-355.
  • 100 Gong JH, Ratkay LG, Waterfield JD. et al. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J Exp Med 1997; 186: 131-137.
  • 101 Shahrara S, Proudfoot AE, Park CC. et al. Inhibition of monocyte chemoattractant protein-1 ameliorates rat adjuvant-induced arthritis. J Immunol 2008; 180: 3447-3456.
  • 102 Beech JS, Reckless J, Mosedale DE. et al. Neuroprotection in ischemia-reper-fusion injury: an antiinflammatory approach using a novel broad-spectrum chemokine inhibitor. J Cereb Blood Flow Metab 2001; 21: 683-689.
  • 103 Veillard NR, Kwak B, Pelli G. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 2004; 94: 253-261.
  • 104 Marino AP, da Silva A, dos Santos P. et al. Regulated on activation, normal T cell expressed and secreted (RANTES) antagonist (Met-RANTES) controls the early phase of Trypanosoma cruzi-elicited myocarditis. Circulation 2004; 110: 1443-1449.
  • 105 Doodes PD, Cao Y, Hamel KM. et al. CCR5 is involved in resolution of inflammation in proteoglycan-induced arthritis. Arthritis Rheum 2009; 60: 2945-2953.
  • 106 Berres ML, Koenen RR, Rueland A. et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest 2010; 120: 4129-4140.
  • 107 Elsner J, Petering H, Höchstetter R. et al. The CC chemokine antagonist MetRANTES inhibits eosinophil effector functions through chemokine receptors CCR1 and CCR3. Eur J Immunol 1997; 27: 2892-2898.
  • 108 Proudfoot AE, Power CA, Hoogewerf J. et al. Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 1996; 271: 2599-2603.
  • 109 Simmons G, Clapham PR, Picard L. et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 1997; 276: 276-279.
  • 110 Chvatchko Y, Proudfoot AE, Buser R. et al. Inhibition of airway inflammation by amino-terminally modified RANTES/CC chemokine ligand 5 analogues is not mediated through CCR3. J Immunol 2003; 171: 5498-5506.
  • 111 Panzer U, Schneider A, Wilken J. et al. The chemokine receptor antagonist AOPRANTES reduces monocyte infiltration in experimental glomerulonephritis. Kidney Int 1999; 56: 2107-2115.
  • 112 Anders HJ, Frink M, Linde Y. et al. CC chemokine ligand 5/RANTES chemokine antagonists aggravate glomerulonephritis despite reduction of glomerular leukocyte infiltration. J Immunol 2003; 170: 5658-5666.
  • 113 Johnson Z, Kosco-Vilbois MH, Herren S. et al. Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system. J Immunol 2004; 173: 5776-5785.
  • 114 Mahler DA, Huang S, Tabrizi M. et al. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest 2004; 126: 926-934.
  • 115 Haringman JJ, Gerlag DM, Smeets TJ. et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum 2006; 54: 2387-2392.
  • 116 Vergunst CE, Gerlag DM, Lopatinskaya L. et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum 2008; 58: 1931-1939.
  • 117 Matsumoto T, Yokoi K, Mukaida N. et al. Pivotal role of interleukin-8 in the acute respiratory distress syndrome and cerebral reperfusion injury. J Leukoc Biol 1997; 62: 581-587.
  • 118 Xia M, Sui Z. Recent developments in CCR2 antagonists. Expert Opin Ther Pat 2009; 19: 295-303.
  • 119 Murphy PM. Viral antichemokines: from pathogenesis to drug discovery. J Clin Invest 2000; 105: 1515-1517.
  • 120 Mantovani A, Bonecchi R, Locati M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 2006; 6: 907-918.
  • 121 Frauenschuh A, Power CA, Déruaz M. et al. Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus. J Biol Chem 2007; 282: 27250-27258.
  • 122 Déruaz M, Frauenschuh A, Alessandri AL. et al. Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med 2008; 205: 2019-2031.
  • 123 Vieira AT, Fagundes CT, Alessandri AL. et al. Treatment with a novel chemokine-binding protein or eosinophil lineage-ablation protects mice from experimental colitis. Am J Pathol 2009; 175: 2382-2391.
  • 124 Russo RC, Alessandri AL, Garcia CC. et al. Therapeutic Effects of Evasin-1, a Chemokine Binding Protein, in Bleomycin-Induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol. 2010 preprint online doi:10.1165/rcmb.2009–0406OC.
  • 125 Smith P, Fallon RE, Mangan NE. et al. Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity. J Exp Med 2005; 202: 1319-1325.
  • 126 Murikinati S, Jüttler E, Keinert T. et al. Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J 2010; 24: 788-798.
  • 127 Klehmet J, Harms H, Richter M. et al. Stroke-induced immunodepression and post-stroke infections: lessons from the preventive antibacterial therapy in stroke trial. Neuroscience 2009; 158: 1184-1193.
  • 128 Zhang B, Subramanian S, Dziennis S. et al. Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. J Immunol 2010; 184: 4087-4094.
  • 129 Shen YC, Wang YH, Chou YC. et al. Dimemorfan protects rats against ischemic stroke through activation of sigma-1 receptor-mediated mechanisms by decreasing glutamate accumulation. J Neurochem 2008; 104: 558-572.
  • 130 Al-Bahrani A, Taha S, Shaath H. et al. TNF-alpha and IL-8 in acute stroke and the modulation of these cytokines by antiplatelet agents. Curr Neurovasc Res 2007; 4: 31-37.
  • 131 Luo Y, Yin W, Signore AP. et al. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglita-zone. J Neurochem 2006; 97: 435-448.
  • 132 Kapadia R, Yi JH, Vemuganti R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 2008; 13: 1813-1826.
  • 133 Azoulay L, Schneider-Lindner V, Dell’aniello S. et al. Thiazolidinediones and the risk of incident strokes in patients with type 2 diabetes: a nested case-control study. Pharmacoepidemiol Drug Saf 2010; 19: 343-350.
  • 134 Hsiao FY, Huang WF, Wen YW. et al. Thiazolidinediones and cardiovascular events in patients with type 2 diabetes mellitus: a retrospective cohort study of over 473,000 patients using the National Health Insurance database in Taiwan. Drug Saf 2009; 32: 675-690.
  • 135 Yusuf S, Diener HC, Sacco RL. et al. PRoFESS Study Group.. Telmisartan to prevent recurrent stroke and cardiovascular events. N Engl J Med 2008; 359: 1225-1237.
  • 136 Dippel DW, Maasland L, Halkes P. et al. on behalf of the ESPRIT Study Group and the ESPS-2 Investigators.. Prevention With Low-Dose Aspirin Plus Dipyrida-mole in Patients With Disabling Stroke. Stroke. 2010 preprint online doi:10.1161/STROKEAHA.110.586453.
  • 137 Montecucco F, Quercioli A, Mirabelli-Badenier M. et al. Statins in the treatment of acute ischemic stroke. Curr Pharmaceutical Biotech. 2010 in press.