Thromb Haemost 2011; 106(05): 827-838
DOI: 10.1160/TH11-08-0592
Theme Issue Article
Schattauer GmbH

Platelets in atherosclerosis

Dirk Lievens
1   Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany
,
Philipp von Hundelshausen
1   Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany
› Author Affiliations
Further Information

Publication History

Received: 28 August 2011

Accepted after major revision: 03 October 2011

Publication Date:
23 November 2017 (online)

Summary

Beyond obvious functions in haemostasis and thrombosis, platelets are considered to be essential in proinflammatory surroundings such as atherosclerosis, allergy, rheumatoid arthritis and even cancer. In atherosclerosis, platelets facilitate the recruitment of inflammatory cells towards the lesion sites and release a plethora of inflammatory mediators, thereby enriching and boosting the inflammatory milieu. Platelets do so by interacting with endothelial cells, circulating leukocytes (monocytes, neutrophils, dendritic cells, T-cells) and progenitor cells. This cross-talk enforces leukocyte activation, adhesion and transmigration. Furthermore, platelets are known to function in innate host defense through the release of antimicrobial peptides and the expression of pattern recognition receptors. In severe sepsis, platelets are able to trigger the formation of neutrophil extracellular traps (NETs), which bind and clear pathogens. The present antiplatelet therapies that target key pathways of platelet activation and aggregation therefore hold the potential to modulate platelet-derived immune functions by reducing cellular interactions of platelets with other immune components and by reducing the secretion of inflammatory proteins into the milieu. The objective of this review is to update and discuss the current perceptions of the platelet immune constituents and their prospect as therapeutic targets in an atherosclerotic setting.

 
  • References

  • 1 Bizzozero J. Ueber einen neuen Formbstandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Archiv Pathol Anat 1865; 90: 261-332.
  • 2 Smyth SS. et al. Platelet functions beyond hemostasis. J Thromb Haemost 2009; 7: 1759-1766.
  • 3 Semple JW. et al. Platelets and the immune continuum. Nat Rev Immunol 2011; 11: 264-274.
  • 4 Yeaman MR. Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010; 67: 525-544.
  • 5 Yeaman MR. et al. Platelet microbicidal protein enhances antibiotic-induced killing of and postantibiotic effect in Staphylococcus aureus. Antimicrob Agents Chemother 1992; 36: 1665-1670.
  • 6 Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105 Suppl (Suppl. 01) S13-33.
  • 7 Li Z. et al. Platelets as immune mediators: Their role in host defense responses and sepsis. Thromb Res 2011; 127: 184-188.
  • 8 Gawaz M. et al. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115: 3378-3384.
  • 9 Senzel L. et al. The platelet proteome. Curr Opin Hematol 2009; 16: 329-333.
  • 10 Koenen RR. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 2009; 15: 97-103.
  • 11 von Hundelshausen P. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 2001; 103: 1772-1777.
  • 12 van Gils JM. et al. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 2009; 85: 195-204.
  • 13 Totani L, Evangelista V. Platelet-leukocyte interactions in cardiovascular disease and beyond. Arterioscler Thromb Vasc Biol 2010; 30: 2357-2361.
  • 14 Sarma J. et al. Increased platelet binding to circulating monocytes in acute coronary syndromes. Circulation 2002; 105: 2166-2171.
  • 15 Drechsler M. et al. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 2010; 122: 1837-1845.
  • 16 Kornerup KN. et al. Circulating platelet-neutrophil complexes are important for subsequent neutrophil activation and migration. J Appl Physiol 2010; 109: 758-767.
  • 17 Gawaz M. et al. Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells. J Thromb Haemost 2008; 6: 235-242.
  • 18 Duffau P, Seneschal J, Nicco C. et al. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med 2010; 2: 47-63.
  • 19 Gerdes N. et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost 2011; 106: 353-362.
  • 20 Siegel-Axel D. et al. Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res 2008; 78: 8-17.
  • 21 Ferroni P. et al. Low-density lipoprotein-lowering medication and platelet function. Pathophysiol Haemost Thromb 2006; 35: 346-354.
  • 22 Cipollone F, Mezzetti A, Porreca E. et al. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia: effects of statin therapy. Circulation 2002; 106: 399-402.
  • 23 Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res 2007; 100: 1673-1685.
  • 24 Denis CV, Wagner DD. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler Thromb Vasc Biol 2007; 27: 728-739.
  • 25 Bergmeier W. et al. The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci USA 2006; 103: 16900-16905.
  • 26 Munnix IC. et al. The glycoprotein VI-phospholipase Cgamma2 signaling pathway controls thrombus formation induced by collagen and tissue factor in vitro and in vivo. Arterioscler Thromb Vasc Biol 2005; 25: 2673-2678.
  • 27 Varga-Szabo D. et al. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 2008; 28: 403-412.
  • 28 Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359: 938-949.
  • 29 Massberg S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197: 41-49.
  • 30 Bennett JS. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 2005; 115: 3363-3369.
  • 31 Angelillo-Scherrer A. et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med 2001; 7: 215-221.
  • 32 Andre P. et al. CD40L stabilizes arterial thrombi by a beta3 integrin--dependent mechanism. Nat Med 2002; 8: 247-252.
  • 33 Ho-Tin-Noe B. et al. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 2008; 68: 6851-6858.
  • 34 Massberg S. et al. A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation. J Exp Med 2002; 196: 887-896.
  • 35 Wang Y. et al. Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury. Circulation 2005; 112: 2993-3000.
  • 36 Kasirer-Friede A. et al. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood 2004; 103: 3403-3411.
  • 37 Goto S. et al. Dependence of platelet thrombus stability on sustained glycoprotein IIb/IIIa activation through adenosine 5'-diphosphate receptor stimulation and cyclic calcium signaling. J Am Coll Cardiol 2006; 47: 155-162.
  • 38 Stolla M. et al. The kinetics of alphaIIbbeta3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy. Blood 2011; 117: 1005-1013.
  • 39 Nesbitt WS. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 2009; 15: 665-673.
  • 40 Shpilberg O. et al. Patients with Glanzmann thrombasthenia lacking platelet glycoprotein alpha(IIb)beta(3) (GPIIb/IIIa) and alpha(v)beta(3) receptors are not protected from atherosclerosis. Circulation 2002; 105: 1044-1048.
  • 41 Kucharska-Newton AM. et al. Association of the platelet GPIIb/IIIa polymorphism with atherosclerotic plaque morphology: the Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 2011; 216: 151-156.
  • 42 Massberg S. et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 2005; 112: 1180-1188.
  • 43 Bigalke B. et al. Expression of platelet collagen receptor glycoprotein VI is associated with acute coronary syndrome. Eur Heart J 2006; 27: 2165-2169.
  • 44 Bultmann A. et al. Impact of glycoprotein VI and platelet adhesion on atherosclerosis--a possible role of fibronectin. J Mol Cell Cardiol 2010; 49: 532-542.
  • 45 Schulz C. et al. EMMPRIN (CD147/Basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall. J Thromb Haemost 2011; 9: 1007-1019.
  • 46 Seizer P. et al. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI-EMMPRIN interaction. Thromb Haemost 2009; 101: 682-686.
  • 47 Dole VS. et al. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin. Blood 2005; 106: 2334-2339.
  • 48 Dong ZM. et al. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice. Circulation 2000; 101: 2290-2295.
  • 49 Huo Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9: 61
  • 50 Ridker PM. et al. Soluble P-selectin and the risk of future cardiovascular events. Circulation 2001; 103: 491-495.
  • 51 Kisucka J. et al. Elevated levels of soluble P-selectin in mice alter blood-brain barrier function, exacerbate stroke, and promote atherosclerosis. Blood 2009; 113: 6015-6022.
  • 52 Engel D. et al. The immunobiology of CD154-CD40-TRAF interactions in atherosclerosis. Semin Immunol 2009; 21: 308-312.
  • 53 Lievens D. et al. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb Haemost 2009; 102: 206-214.
  • 54 Lutgens E. et al. Requirement for CD154 in the progression of atherosclerosis. Nat Med 1999; 5: 1313-1316.
  • 55 Lutgens E. et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 2010; 207: 391-404.
  • 56 Henn V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391: 591
  • 57 Henn V. et al. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 2001; 98: 1047-1054.
  • 58 Chen C. et al. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells. Blood 2008; 112: 3205-3216.
  • 59 Lievens D. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116: 4317-4327.
  • 60 Zhou X. et al. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000; 102: 2919-2922.
  • 61 Ait-Oufella H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006; 12: 178-180.
  • 62 Danese S. et al. Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J Immunol 2004; 172: 2011-2015.
  • 63 Inwald DP. et al. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 2003; 92: 1041-1048.
  • 64 Aslam R. et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 2006; 107: 637-641.
  • 65 Hodgkinson C, Ye S. Toll-like receptors, their ligands, and atherosclerosis. Sci World J 2011; 11: 437-453.
  • 66 Edfeldt K. et al. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002; 105: 1158-1161.
  • 67 Kiechl S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002; 347: 185-192.
  • 68 Michelsen KS. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 2004; 101: 10679-10684.
  • 69 Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 2005; 115: 3149-3156.
  • 70 Andonegui G, Kerfoot SM, McNagny K. et al. Platelets express functional Toll-like receptor-4. Blood 2005; 106: 2417-2423.
  • 71 Zhang G. et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 2009; 182: 7997-8004.
  • 72 Yeaman MR. et al. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun 1992; 60: 1202-1209.
  • 73 Kramp BK. et al. Heterophilic chemokine receptor interactions in chemokine signaling and biology. Exp Cell Res 2011; 317: 655-663.
  • 74 Riviere C. et al. Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood 1999; 93: 1511-1523.
  • 75 Clemetson KJ. et al. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood 2000; 96: 4046-4054.
  • 76 Fujisawa T. et al. Presence of high contents of thymus and activation-regulated chemokine in platelets and elevated plasma levels of thymus and activation-regulated chemokine and macrophage-derived chemokine in patients with atopic dermatitis. J Allergy Clin Immunol 2002; 110: 139-146.
  • 77 Schafer A. et al. Novel role of the membrane-bound chemokine fractalkine in platelet activation and adhesion. Blood 2004; 103: 407-412.
  • 78 Combadiere C. et al. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 2003; 107: 1009-1016.
  • 79 Lesnik P. et al. Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest 2003; 111: 333-340.
  • 80 Meyer Dos Santos S. et al. The CX3C chemokine fractalkine mediates platelet adhesion via the von Willebrand receptor glycoprotein Ib. Blood 2011; 117: 4999-5008.
  • 81 Liu H. et al. Aspirin inhibits fractalkine expression in atherosclerotic plaques and reduces atherosclerosis in ApoE gene knockout mice. Cardiovasc Drugs Ther 2010; 24: 17-24.
  • 82 Nergiz-Unal R. et al. CD36 as a multiple-ligand signaling receptor in atherothrombosis. Cardiovasc Hematol Agents Med Chem 2011; 9: 42-55.
  • 83 Febbraio M. et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105: 1049-1056.
  • 84 Assinger A, Koller F, Schmid W. et al. Hypochlorite-oxidized LDL induces intraplatelet ROS formation and surface exposure of CD40L--a prominent role of CD36. Atherosclerosis 2010; 213: 129-134.
  • 85 Siess W. et al. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci USA 1999; 96: 6931-6936.
  • 86 van Willigen G. et al. LDLs increase the exposure of fibrinogen binding sites on platelets and secretion of dense granules. Arterioscler Thromb 1994; 14: 41-46.
  • 87 Korporaal SJ. et al. Binding of low density lipoprotein to platelet apolipoprotein E receptor 2' results in phosphorylation of p38MAPK. J Biol Chem 2004; 279: 52526-52534.
  • 88 Yaari S Goldbourt, Even-Zohar S. et al. Associations of serum high density lipoprotein and total cholesterol with total, cardiovascular, and cancer mortality in a 7-year prospective study of 10 000 men. Lancet 1981; 1: 1011-1015.
  • 89 Tenenbaum A. et al. Optimal management of combined dyslipidemia: what have we behind statins monotherapy?. Adv Cardiol 2008; 45: 127-153.
  • 90 Korporaal SJ. et al. Deletion of the high-density lipoprotein receptor scavenger receptor BI in mice modulates thrombosis susceptibility and indirectly affects platelet function by elevation of plasma free cholesterol. Arterioscl Thromb Vasc Biol 2011; 31: 34-42.
  • 91 Ma Y. et al. Scavenger receptor BI modulates platelet reactivity and thrombosis in dyslipidemia. Blood 2010; 116: 1932-1941.
  • 92 Vergeer M. et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med 2011; 364: 136-145.
  • 93 Borissoff JI. et al. Early atherosclerosis exhibits an enhanced procoagulant state. Circulation 2010; 122: 821-830.
  • 94 Angiolillo DJ. et al. Platelet thrombin receptor antagonism and atherothrombosis. Eur Heart J 2010; 31: 17-28.
  • 95 Kahn ML. et al. A dual thrombin receptor system for platelet activation. Nature 1998; 394: 690-694.
  • 96 Ebnet K. et al. Junctional adhesion molecules (JAMs): more molecules with dual functions?. J Cell Sci 2004; 117: 19-29.
  • 97 Orlova VV, Chavakis T. Regulation of vascular endothelial permeability by junctional adhesion molecules (JAM). Thromb Haemost 2007; 98: 327-332.
  • 98 Malergue F. et al. A novel immunoglobulin superfamily junctional molecule expressed by antigen presenting cells, endothelial cells and platelets. Mol Immunol 1998; 35: 1111-1119.
  • 99 Santoso S. et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 2002; 196: 679-691.
  • 100 Zernecke A. et al. Importance of junctional adhesion molecule-A for neointimal lesion formation and infiltration in atherosclerosis-prone mice. Arterioscler Thromb Vasc Biol 2006; 26: e10-3.
  • 101 Schall TJ. et al. A human T cell-specific molecule is a member of a new gene family. J Immunol 1988; 141: 1018-1025.
  • 102 Schall TJ. et al. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990; 347: 669-671.
  • 103 Schober A. et al. Deposition of Platelet RANTES Triggering Monocyte Recruitment Requires P-Selectin and Is Involved in Neointima Formation After Arterial Injury. Circulation 2002; 106: 1523-1529.
  • 104 Veillard NR. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 2004; 94: 253-261.
  • 105 Brandt E. et al. Platelet-derived CXC chemokines: old players in new games. Immunol Rev 2000; 177: 204-216.
  • 106 Kasper B. et al. Platelet factor 4 (PF-4)-induced neutrophil adhesion is controlled by src-kinases, whereas PF-4-mediated exocytosis requires the additional activation of p38 MAP kinase and phosphatidylinositol 3-kinase. Blood 2004; 103: 1602-1610.
  • 107 Petersen F. et al. TNF-alpha renders human neutrophils responsive to platelet factor 4. Comparison of PF-4 and IL-8 reveals different activity profiles of the two chemokines. J Immunol 1996; 156: 1954-1962.
  • 108 Pitsilos S. et al. Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters. Thromb Haemost 2003; 90: 1112-1120.
  • 109 von Hundelshausen P. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 2005; 105: 924-930.
  • 110 Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discov 2010; 9: 141-153.
  • 111 Karshovska E. et al. Expression of HIF-1alpha in injured arteries controls SDF-1alpha mediated neointima formation in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol 2007; 27: 2540-2547.
  • 112 Kathiresan S. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009; 41: 334-341.
  • 113 Mehta NN. et al. The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels. Eur Heart J 2011; 32: 963-971.
  • 114 Kiechl S. et al. Coronary artery disease-related genetic variant on chromosome 10q11 is associated with carotid intima-media thickness and atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30: 2678-2683.
  • 115 Merhi-Soussi F. et al. Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovasc Res 2005; 66: 583-593.
  • 116 Brody J I. et al. Interleukin-1 alpha as a factor in occlusive vascular disease. Am J Clin Pathol 1992; 97: 8-13.
  • 117 Kaplanski G. et al. Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood 1994; 84: 4242-4248.
  • 118 Gawaz M. et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis 2000; 148: 75
  • 119 Boring L. et al. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394: 894-897.
  • 120 Lutgens E. et al. Gene profiling in atherosclerosis reveals a key role for small inducible cytokines: validation using a novel monocyte chemoattractant protein monoclonal antibody. Circulation 2005; 111: 3443-3452.
  • 121 Gawaz M. et al. Transient platelet interaction induces MCP-1 production by endothelial cells via I kappa B kinase complex activation. Thromb Haemost 2002; 88: 307-314.
  • 122 Assoian RK. et al. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258: 7155-7160.
  • 123 Bao W. et al. Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents. Blood 2010; 116: 4639-4645.
  • 124 Lutgens E. et al. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 2002; 22: 975-982.
  • 125 Toma I, McCaffrey TA. Transforming growth factor-beta and atherosclerosis: interwoven atherogenic and atheroprotective aspectsCell Tissue Res 2011; epub ahead of print.
  • 126 Heeschen C. et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 2003; 348: 1104-1111.
  • 127 Yacoub D. et al. Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway. Arterioscler Thromb Vasc Biol 2010; 30: 2424-2433.
  • 128 Massberg S. et al. Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood 1999; 94: 3829-3838.
  • 129 Anderson GM, Cook EH. Pharmacogenetics. Promise and potential in child and adolescent psychiatry. Child Adolesc Psychiatr Clin N Am 2000; 9: 23-42. viii
  • 130 Walther DJ. et al. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet al.pha-granule release. Cell 2003; 115: 851-862.
  • 131 Li N. et al. Effects of serotonin on platelet activation in whole blood. Blood Coagul Fibrinolysis 1997; 8: 517-523.
  • 132 Duerschmied D. et al. Serotonin stimulates platelet receptor shedding by tumor necrosis factor-alpha-converting enzyme (ADAM17). J Thromb Haemost 2009; 7: 1163-1171.
  • 133 Satomura K. et al. Sarpogrelate, a specific 5HT2-receptor antagonist, improves the coronary microcirculation in coronary artery disease. Clinical Cardiol 2002; 25: 28-32.
  • 134 Bampalis VG. et al. Fluoxetine inhibition of 5-HT-potentiated platelet aggregation in whole blood. Thromb Haemost 2010; 104: 1272-1274.
  • 135 Andrade C. et al. Serotonin reuptake inhibitor antidepressants and abnormal bleeding: a review for clinicians and a reconsideration of mechanisms. J Clin Psychiatry 2010; 71: 1565-1575.
  • 136 Dees C. et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med 2011; 208: 961-972.
  • 137 Soga F. et al. Serotonin activates human monocytes and prevents apoptosis. J Invest Dermatol 2007; 127: 1947-1955.
  • 138 Leon-Ponte M. et al. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 2007; 109: 3139-3146.
  • 139 Muller T. et al. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One 2009; 4: e6453
  • 140 Coccheri S. Antiplatelet drugs--do we need new options? With a reappraisal of direct thromboxane inhibitors. Drugs 2010; 70: 887-908.
  • 141 Steinhubl SR. et al. Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vasc Med 2007; 12: 113-122.
  • 142 Cyrus T. et al. Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 2002; 106: 1282-1287.
  • 143 Tous M. et al. Aspirin attenuates the initiation but not the progression of atherosclerosis in apolipoprotein E-deficient mice fed a high-fat, high-cholesterol diet. Basic Clin Pharmacol Toxicol 2004; 95: 15-19.
  • 144 Paul-Clark MJ. et al. 15-epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. J Exp Med 2004; 200: 69-78.
  • 145 Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994; 265: 956-959.
  • 146 de Winther MP. et al. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25: 904-914.
  • 147 Afek A. et al. Clopidogrel attenuates atheroma formation and induces a stable plaque phenotype in apolipoprotein E knockout mice. Microvasc Res 2009; 77: 364-369.
  • 148 Cha JK. et al. Changes in platelet P-selectin and in plasma C-reactive protein in acute atherosclerotic ischemic stroke treated with a loading dose of clopidogrel. J Thromb Thrombolysis 2002; 14: 145-150.
  • 149 Hermann A. et al. Platelet CD40 ligand (CD40L)--subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets 2001; 12: 74-82.
  • 150 Evangelista V. et al. Clopidogrel inhibits platelet-leukocyte adhesion and platelet-dependent leukocyte activation. Thromb Haemost 2005; 94: 568-577.
  • 151 Waehre T. et al. Clopidogrel increases expression of chemokines in peripheral blood mononuclear cells in patients with coronary artery disease: results of a double-blind placebo-controlled study. J Thromb Haemost 2006; 4: 2140-2147.
  • 152 Naik UP. et al. Identification of a novel calcium-binding protein that interacts with the integrin alphaIIb cytoplasmic domain. J Biol Chem 1997; 272: 4651-4654.
  • 153 Freedman JE. Molecular regulation of platelet-dependent thrombosis. Circulation 2005; 112: 2725-2734.
  • 154 Buensuceso C. et al. Detection of integrin alpha IIbbeta 3 clustering in living cells. J Biol Chem 2003; 278: 15217-15224.
  • 155 Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov 2010; 9: 154-169.