Open Access
CC BY 4.0 · Aorta (Stamford) 2015; 03(05): 152-161
DOI: 10.12945/j.aorta.2015.14.069
Original Research Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Increased Expression of Lamin A/C Correlate with Regions of High Wall Stress in Abdominal Aortic Aneurysms

Amir Malkawi
1   Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
,
Grisha Pirianov
1   Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
,
Evelyn Torsney
1   Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
,
Ian Chetter
2   Centre for Cardiovascular & Metabolic Research, York Hull Medical School, Hull, UK
,
Natzi Sakalihasan
3   Department of Cardiovascular Surgery, University Hospital of Liege, Liege, Belgium
,
Ian M. Loftus
1   Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
,
Ian Nordon
4   Department of Vascular Surgery, University Hospital Southampton, Southampton, UK
,
Christopher Huggins
1   Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
,
Nicoletta Charolidi
1   Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
,
Matt Thompson
1   Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
,
Xie Yun Xu
5   Department of Chemical Engineering, Imperial College London, London, UK
,
Gillian W. Cockerill
1   Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
› Author Affiliations
Further Information

Publication History

06 November 2014

18 May 2015

Publication Date:
24 September 2018 (online)

Preview

Abstract

Background: Since aortic diameter is the most ­significant risk factor for rupture, we sought to identify stress-dependent changes in gene expression to illuminate novel molecular processes in aneurysm rupture.

Materials and Methods: We constructed finite element maps of abdominal computerized tomography scans (CTs) of seven abdominal aortic aneurysm (AAA) patients to map wall stress. Paired biopsies from high- and low-stress areas were collected at surgery using vascular landmarks as coordinates. Differential gene expression was evaluated by Illumina Array analysis, using the whole genome DNA-mediated, annealing, selection, extension, and ligation (DASL) gene chip (n = 3 paired samples).

Results: The sole significant candidate from this analysis, Lamin A/C, was validated at the protein level, using western blotting. Lamin A/C expression in the inferior mesenteric vein (IMV) of AAA patients was compared to a control group and in aortic smooth muscle cells in culture in response to physiological pulsatile stretch. ­Areas of high wall stress (n = 7) correlate to those ­regions which have the thinnest walls [778 µm (585–1120 µm)] in comparison to areas of lowest wall stress [1620 µm (962–2919 µm)]. Induced expression of Lamin A/C ­correlated with areas of high wall stress from AAAs but was not significantly induced in the IMV from AAA patients compared to controls (n = 16). Stress-induced expression of Lamin A/C was mimicked by exposing aortic smooth muscle cells to prolonged pulsatile stretch.

Conclusion: Lamin A/C protein is specifically increased in areas of high wall stress in AAA from patients, but is not increased on other vascular beds of aneurysm patients, suggesting that its elevation may be a compensatory response to the pathobiology leading to aneurysms.

The following authors contributed equally to the work in this manuscript.


Supplementary Material

 
  • References

  • 1 Collaborative Aneurysm Screening Group. A comparative study of the prevalence of abdominal aortic aneurysms in the United Kingdom, Denmark and Australia. J Med Screen 2001; 8: 46-84 . DOI: 10.1136/jms.8.1.46
  • 2 Allaire E, Hasenstab D, Kenagy RD, Starcher B, Clowes MM, Clowes AW. Prevention of aneurysm development and rupture by local overexpression of plasminogen activator inhibitor-1. Circulation 1998; 98: 249-255 . DOI: 10.1161/01.CIR.98.3.249
  • 3 Curci JA, Liao S, Huffman MD, Shapiro SD, Thompson RW. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest 1998; 102: 1900-1910 . DOI: 10.1172/JCI2182
  • 4 Freestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell J. Inflammation and matrix metalloproteinase’s in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 1995; 15: 1145-1151 . DOI: 10.1161/01.ATV.15.8.1145
  • 5 Wilson WR, Anderton M, Schwalbe EC, Jones JL, Furness PN, Bell PR. , et al. Matrix metalloproteinase’s-8 and -9 are increased at the site of abdominal aortic ­aneurysm rupture. Circulation 2006; 113: 438-445 . DOI: 10.1161/CIRCULATIONAHA.105.551572
  • 6 Lederle FA, Johnson GR, Wilson SE, Chute EP, Hye RJ, Makaroun MS. , et al. The aneurysm detection and management study screening program: Validation cohort and final results. Arch Intern Med 2000; 160: 1425-1430 . DOI: 10.1001/archinte.160.10.1425
  • 7 Tsui JC. Experimental models of abdominal aortic aneurysms. Open Cardiovasc Med J 2010; 4: 221-230 . DOI: 10.2174/1874192401004010221
  • 8 Nordon IM, Hinchliffe RJ, Loftus IM, Thompson MM. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol 2011; 8: 92-102 . DOI: 10.1038/nrcardio.2010.180
  • 9 Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2006; 26: 987-994 . DOI: 10.1161/01.ATV.0000214999.12921.4f
  • 10 Shin IS, Kim JM, Kim KL, Jang SY, Jeon ES, Choi SH. , et al. Early growth response factor-1 is associated with intraluminal thrombus formation in human abdominal aortic aneurysm. J Am Coll ­Cardiol 2009; 53: 792-799 . DOI: 10.1016/j.jacc.2008.10.055
  • 11 Martinez-Pinna R, Madrigal-Matute J, Tarin C, Burillo E, Esteban-Salan M, Pastor-Vargas C. , et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2013; 33: 2013-2020 . DOI: 10.1161/ATVBAHA.112.301191
  • 12 Filardo G, Powell JT, Martinez MA, Ballard DJ. Surgery for small asymptomatic abdominal aortic aneurysms. Cochrane Database Syst Rev 2012; 3: CD001835 . DOI: 10.1002/14651858.cd001835.pub3
  • 13 Choke E, Thompson MM, Dawson J, Wilson WR, Sayed S, Loftus IM. , et al. ­Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines. Arterioscler Thromb Vasc Biol 2006; 26: 2077-2082 . DOI: 10.1161/01.ATV.0000234944.22509.f9
  • 14 Xu XY, Borghi A, Nchimi A, Leung J, Gomez P, Cheng Z. , et al. High levels of 18-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur J Vas Endovasc Surg 2010; 39: 295-301 . DOI: 10.1016/j.ejvs.2009.10.016
  • 15 Raghavan ML, Vorp DA. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 2000; 33: 475-482 . DOI: 10.1016/S0021-9290(99)00201-8
  • 16 Lenk GM, Tromp G, Weinsheimer S, Gatalica Z, Berguer R, Kuivaniemi H. Whole genome expression profiling reveals a significant role for immune function in human ­abdominal aortic aneurysms. BMC Genomics 2007; 8: 237-242 . DOI: 10.1186/1471-2164-8-237
  • 17 Choke E, Thompson MM, Jones A, Torsney E, Dawson J, Laing K. , et al. Gene expression profile of abdominal aortic aneurysm rupture. Ann NY Acad Sci 2006; 1085: 311-314 . DOI: 10.1196/annals.1383.007; 10.1196/annals.1383.006
  • 18 Tung WS, Lee JK, Thompson RW. Simultaneous analysis of 1176 gene products in normal human aorta and abdominal aortic aneurysms using a membrane-based complementary DNA expression array. J Vasc Surg 2001; 34: 143-150 . DOI: 10.1067/mva.2001.113310
  • 19 Tilson MD, Fu C, Xia SX, Syn D, Yoon Y, McCaffrey T. Expression of molecular messages for angiogenesis by fibroblasts from aneurysmal abdominal aorta versus dermal fibroblasts. Int J Surg Invest 2000; 1: 453-457 . PMID: 11341602
  • 20 Kazi M, Zhu C, Roy J, Paulsson-Berne G, Hamsten A, Swedenborg J. , et al. Difference in matrix-degrading protease expression and activity between thrombus-free and thrombus-covered wall of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 2005; 25: 1341-1346 . DOI: 10.1161/01.ATV.0000166601.49954.21
  • 21 Colige A, Nuytinck L, Hausser I, van Essen AJ, Thiry M, Herens C. , et al. Novel types of mutation responsible for the dermatosparactic type of Ehlers-Danlos syndrome (Type VIIC) and common polymorphisms in the ADAMTS2 gene. J Invest Dermatol 2004; 123: 656-663 . DOI: 10.1111/j.0022-202X.2004.23406.x
  • 22 Gardella R, Zoppi N, Assanelli D, Muiesan ML, Barlati S, Colombi M. Exclusion of candidate genes in a family with arterial tortuosity syndrome. Am J Med Genet A 2004; 126A: 221-228 . DOI: 10.1002/ajmg.a.20589
  • 23 Bayston T, Ramessur S, Reise J, Jones KG, Powell JT. Prostaglandin E2 receptors in abdominal aortic aneurysm and human aortic smooth muscle cells. J Vasc Surg 2003; 38: 354-359 . DOI: 10.1016/S0741-5214(03)00339-2
  • 24 Lin F, Warman HJ. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin. C. J Biol Chem 1993; 268: 16321-16326 . PMID: 8344919
  • 25 Gerace L, Comeau C, Benson M. Organization and modulation of nuclear lamina structure. J Cell Sci Suppl 1984; 1: 137-160 . DOI: 10.1242/jcs.1984.Supplement_1.10
  • 26 Varela I, Cadiñanos J, Pendás AM, Gutiérrez-Fernández A, Folgueras AR, Sánchez LM. , et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 2005; 437: 564-568 . DOI: 10.1038/nature04019
  • 27 Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV. , et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci USA 2002; 99: 13049-13054 . DOI: 10.1073/pnas.192460799
  • 28 Corrigan DP, Kuszczak D, Rusinol AE, Thewke DP, Hrycyna CA, Michaelis S. , et al. Prelamin A endoproteolytic processing in vitro by recombinant Zmpste24. Biochem J 2005; 387: 129-318 . DOI: 10.1042/BJ20041359
  • 29 Weber K, Plessmann U, Traub P. Maturation of nuclear lamin A involves a specific ­carboxy-terminal trimming, which removes the polyisoprenylation site from the precursor; implications for the structure of the nuclear lamina. FEBS Lett 1989; 257: 411-414 . DOI: 10.1016/0014-5793(89)81584-4
  • 30 Beck LA, Hosick TJ, Sinensky M. Isoprenylation is required for the processing of the lamin A precursor. J Cell Biol 1990; 110: 1489-1499 . DOI: 10.1083/jcb.110.5.1489
  • 31 Shyu KG. Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin Sci (Lond) 2009; 116: 377-389 . DOI: 10.1042/CS20080163
  • 32 Fuchs E, Weber K. Intermediate filaments: Structure, dynamics, function and disease. Annu Rev Biochem 1994; 63: 345-382 . DOI: 10.1146/annurev.bi.63.070194.002021
  • 33 Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD. , et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 2004; 113: 370-378 . DOI: 10.1172/JCI200419670
  • 34 Wilson KL, Zastrow MS, Lee KK. Lamins and disease: Insights into nuclear infrastructure. Cell 2001; 104: 647-650 . DOI: 10.1016/S0092-8674(02)01452-6; 10.1016/S0092-8674(01)00261-6
  • 35 Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB. , et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2004; 101: 8963-8968 . DOI: 10.1073/pnas.0402943101
  • 36 Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T. Distinct structural and ­mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2006; 103: 10271-10276 . DOI: 10.1073/pnas.0601058103
  • 37 Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N. , et al. Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 2010; 121: 2200-2210 . DOI: 10.1161/CIRCULATIONAHA.109.902056
  • 38 Muchir A, Bonne G, van der Kool AJ, van Meegan M, Baas F, Bolhuis PA. , et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD18). Hum Mol Genet 2000; 9: 1453-1459 . DOI: 10.1093/hmg/9.9.1453
  • 39 De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat JM, Tazir M, Kassouri N. , et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 2002; 70: 726-736 . DOI: 10.1086/339274
  • 40 Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003; 423: 293-298 . DOI: 10.1038/nature01629
  • 41 Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O, Shafeghati Y. , et al. LMNA mutations in atypical Werner’s syndrome. Lancet. 2003; 362: 440-445 . DOI: 10.1016/S0140-6736(03)14069-X
  • 42 Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M. , et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999; 341: 1715-1724 . DOI: 10.1056/NEJM199912023412302
  • 43 De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I. et al. Lamin a truncation in Hutchinson-Gilford progeria. Science 2003; 300: 2055 . DOI: 10.1126/science.1084125
  • 44 Shackelton S, Lloyd D, Jackson SN, Evans R, Niermeijer MF, Singh BM. , et al. LMNA, encoding Lamin A/C is mutated in partial ­lipodystrophy. Nat Genet 2000; 24: 153-156 . DOI: 10.1038/72807
  • 45 Novelli G, Muchir A, Sangiuolo F, Helbling-Leclerc A, D’Apice MR, Massart C. , et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet 2002; 71: 426-431 . DOI: 10.1086/341908
  • 46 Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Geneviève D. , et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet 2004; 13: 2493-2503 . DOI: 10.1093/hmg/ddh265
  • 47 Huang S, Risques RA, Martin GM, Rabinovitch PS, Oshima J. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp Cell Res 2008; 314: 82-91 . DOI: 10.1016/j.yexcr.2007.08.004
  • 48 Dawson J, Tooze J, Cockerill G, Choke E, Loftus I, Thompson MM. Endothelial progenitor cells and abdominal aortic aneurysms. Ann NY Acad Sci 2006; 1085: 327-330 . DOI: 10.1196/annals.1383.011
  • 49 Cafueri G, Parodi F, Pistorio A, Bertolotto M, Ventura F, Gambini C. , et al. Endothelial and smooth muscle cells from abdominal aortic aneurysm have increased oxidative stress and telomere attrition. PLoS One 2012; 7: e35312 . DOI: 10.1371/journal.pone.0035312
  • 50 Thompson RW, Liao S, Curci JA. ­Vascular smooth muscle cell apoptosis in ­abdominal aortic aneurysms. Coron Artery Dis 1997; 8: 623-631 . DOI: 10.1097/00019501-199710000-00005
  • 51 Torsney E, Pirianov G, Charolidi N, Shoreim A, Gaze D, Petrova S. , et al. Elevation of plasma high-density lipoproteins inhibits development of experimental abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 2012; 32: 2678-2686 . DOI: 10.1161/ATVBAHA.112.00009
  • 52 Lazebnik Y, Takahashi A, Moir R, Goldman R, Poiriser G, Kaufmann S. , et al. Studies of lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 1995; 92: 9042-9046 . DOI: 10.1073/pnas.92.20.9042
  • 53 Steen RL, Collas P. Mistargeting of B-type lamins at the end of mitosis: implications on cell survival and regulation of lamins A/C expression. J Cell Biol 2001; 153: 621-626 . DOI: 10.1083/jcb.153.3.621
  • 54 Capell BC, Olive M, Erdos MR, Cao K, Faddah DA, Tavarez UL. , et al. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA 2008; 105: 15902-15907 . DOI: 10.1073/pnas.0807840105
  • 55 Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y. , et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci USA 2005; 102: 10291-10296 . DOI: 10.1073/pnas.0504641102
  • 56 Jeremy RW, Robertson E, Lu Y, Hambly BD. Perturbations of mechanotransduction and aneurysm formation in heritable aortopathies. Int J Cardiol 2013; 169: 7-16 . DOI: 10.1016/j.ijcard.2013.08.056
  • 57 Bäck M, Gasser TC, Michel JB, Caligiuri G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res 2013; 99: 232-241 . DOI: 10.1093/cvr/cvt040
  • 58 Humphrey JD, Milewicz DM, Tellides G, Schwartz MA. Cell biology. Dysfunctional mechanosensing in aneurysms. Science 2014; 344: 477-479 . DOI: 10.1126/­science.1253026