Tierarztl Prax Ausg K Kleintiere Heimtiere 2015; 43(01): 5-14
DOI: 10.15654/TPK-130744
Originalartikel
Schattauer GmbH

Evaluation der Herzratenvariabilität als Narkosetiefenmonitoring beim Hund

Untersuchung anhand total intravenöser Propofolanästhesie allein sowie in Kombination mit Dexmedetomidin oder RemifentanilEvaluation of heart rate variability for monitoring the depth of anaesthesia in dogsInvestigations based on total intravenous anaesthesia using propofol alone or in combination with dexmedetomidine or remifentanil
C. Bergfeld
1   Klinik für Kleintiere, Tierärztliche Hochschule Hannover
,
M. Beyerbach
2   Institut für Biometrie Epidemiologie und Informationsverarbeitung, TiHo Hannover
,
A. M. Voigt
3   Kleintierklinik Hannover
,
S. B. R. Kästner
1   Klinik für Kleintiere, Tierärztliche Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Eingegangen: 30 October 2013

Akzeptiert nach Revision: 12 May 2014

Publication Date:
08 January 2018 (online)

Zusammenfassung

Zielstellung: Evaluation der Herzratenvariabilität (HRV) als Indikator für autonome Aktivität für das Narkosetiefenmonitoring beim Hund während drei verschiedenen total intravenösen Anästhesieprotokollen, drei Narkosetiefen sowie vor und nach elektrischer nozizeptiver Stimulation. Material und Methoden: Die der randomisierten, experimentellen Studie mit komplettem Cross-over-Design zugrunde liegenden Daten wurden an sieben Beaglen (14,3 ± 1,7 kg) erhoben. Jeder Hund durchlief drei Anästhesieprotokolle: Propofol allein (Gruppe P) sowie Propofol in Kombination mit Dexmedetomidin (3 µg/kg/h, Gruppe PD) oder Remifentanil (18 µg/kg/h, Gruppe PR). Propofol wurde als “Target Controlled Infusion” (TCI) verabreicht. Drei Narkosetiefen (flach, mittel, tief) wurden über Propofol-Zielkonzentrationen im Blut definiert und tierindividuell angepasst (durchschnittlich 7, 9 und 11 µg/ml in Gruppe P bzw. 3, 5 und 7 µg/ml in Gruppe PD und PR). Während jeder Narkosetiefe wurde ein standardisierter nozizeptiver Reiz in Form supramaximaler elektrischer Stimulation (50 Hz, 50 V, 10 ms) medial am rechten Unterarm gesetzt. Das Elektrokardiogramm (EKG) wurde kontinuierlich bipolar abgeleitet und aufgezeichnet. In die statistische Auswertung gingen für jede Narkosetiefe die aus den EKG-Daten ermittelten RRIntervalle genau 2 Minuten vor und nach jeder Reizgabe ein. Mittels eines Analyseprogramms (Kubios HRV) für die HRV wurden neben den frequenzabhängigen HRV-Parametern Low Frequency (LF) und High Frequency (HF) die zeitabhängigen HRV-Parameter Standardabweichung des Mittelwerts der RR-Intervalle (SDNN) und die Quadratwurzel des Mittelwerts der Summe der quadrierten Differenzen zwischen aufeinander folgenden RR-Intervallen (RMSSD) ermittelt. Ergebnisse: Weder die RR-Intervalle noch die aus den RR-Intervallen abgeleiteten HRV-Parameter ermöglichten eine Differenzierung zwischen den über die Propofol-Zielkonzentrationen definierten Narkosetiefen, was gegen ihre Verwendbarkeit als klinisches Narkosetiefenmonitoring spricht. Nozizeption ließ sich allein durch die RR-Intervalle abbilden. Schlussfolgerung: Insgesamt zeigten sich die untersuchten HRVParameter für die Narkosetiefenbestimmung als wenig gewinnbringend.

Summary

Objective: Evaluation of heart-rate variability (HRV) as an indicator for autonomous activity to monitor anaesthesia in dogs during three different total intravenous anaesthetic protocols and three anaesthetic depth levels as well as before and after electrical nociceptive stimulation. Material and methods: Seven beagle dogs (14.3 ± 1.7 kg) were used in a randomised experimental trial with a complete crossover design. Each dog went through all three anaesthetic protocols, which were propofol alone (group P) and propofol combined with dexmedetomidine (3 µg/kg/h, group PD) or remifentanil (18 µg/kg/h, group PR). Propofol was given using target-controlled infusion. Three anaesthetic depth levels (light, medium, deep) were defined by target concentrations for propofol in the blood and were adapted to the individual animal and treatment (mean of 7, 9 and 11 µg/ml, and in combination with dexmedetomidine or remifentanil, a mean of 3, 5 and 7 µg/ml). During each anaesthetic level, a standardised supramaximal nociceptive electric stimulus (50 Hz, 50 V, 10 ms) was applied medially to the right forearm. The bipolar-derived electrocardiogram (ECG) was recorded continuously. For each anaesthetic depth, the RR-intervals recorded 2 minutes before and after each stimulation were included in the statistical analysis. Using an HRV analytical program (Kubios HRV), the frequency domain HRV-parameters low (LF) and high (HF) frequency and the time-domain HRV-parameters RR-intervals, standard deviation of all RR-intervals (SDNN) and the square root of the mean of the sum of the squares of the differences between consecutive RR-intervals (RMSSD) were determined. Results: Neither the RR-intervals nor the currently available HRV-parameters which were derived from the RR-intervals were able to discriminate between the different anaesthetic depths levels. Nociception could only be represented by the RRintervals. Conclusion: Overall, the investigated standard HRV parameters offered no additional information for the monitoring of anaesthetic depths at the investigated, clinically used dose rates.

 
  • Literatur

  • 1 Beier SL, De Araujo Aguiar AJ, Vianna TG, Mattoso CRS, Massone F. Effect of remifentanil on requirements for propofol administered by use of a target-controlled infusion system for maintaining anaesthesia in dogs. Am J Vet Res 2009; 70: 703-709.
  • 2 Beths T, Glen JB, Reid J, Monteiro AM, Nolan AM. Evaluation and optimisation of a target-controlled infusion system for administering propofol to dogs as part of a total intravenous anaesthetic technique during dental surgery. Vet Rec 2001; 148: 198-203.
  • 3 Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC. Stability over time of heart period variability in patients with previous myocardial infarction and ventricular arrhythmias. Am J Cardiol 1992; 169: 718-723.
  • 4 Billmann GE. The effect of heart rate on the heart rate variability response to autonomic interventions. Front Physiol 2013; 04: 222.
  • 5 Bortz J. Statistik für Sozialwissenschaftler. Berlin, Heidelberg: Springer; 1993: 7-13.
  • 6 Bürkle H, Dunbar S, Van Aken H. Remifentanil: A novel, short-acting muopioid. Anaesth Analg 1996; 83: 646-651.
  • 7 Cullen PM, Turtle M, Prys-Roberts C, Way WL, Dye J. Effect of propofol anesthesia on baroreflex activity in humans. Anesth Analg 1987; 66: 1115-1120.
  • 8 Dawidowicz AL, Fijalkowska A. Determination of propofol in blood by HPLC. Comparison of the extraction and precipitation methods. J Chrom Sci 1995; 33: 377-382.
  • 9 Dennis SG, Wotton PR, Boswood A, Flaherty D. Comparison of the effects of thiopentone and propofol on the electrocardiogram of dogs. Vet Rec 2007; 160: 681-686.
  • 10 Dershwitz M, Randel GI, Rosow CE, Fragen RJ, Connors PM, Librojo ES. Initial clinical experience with remifentanil, a new opioid metabolized by esterases. Anesth Analg 1995; 81: 619-623.
  • 11 Deutschman CS, Harris AP, Fleisher LA. Changes in heart-rate-variability under propofol anesthesia – a possible explanation for propofol-induced bradycardia. Anesth Analg 1994; 79: 373-377.
  • 12 Dutschmann M, Waki H, Manzke T, Simms AE, Pickering AE, Richter DW, Paton JFR. The potency of different serotonergic agonists in counteracting opioid evoked cardiorespiratory disturbances. Phil Trans R Soc B 2009; 364: 2611-2623.
  • 13 Fan SZ, Cheng YJ, Liu CC. Heart rate variability – a useful non-invasive tool in anesthesia. Acta Anaesthesiol Sin 1994; 32: 51-56.
  • 14 Galletly DC, Buckley DHF, Robinson BJ, Corfiatis T. Heart rate variability during propofol anaesthesia. Br J Anaesth 1994; 72: 219-220.
  • 15 Haga HA, Ranheim B, Spadavecchia C. Heart rate variability responses to nociception during isoflurane anaesthesia in pigs. IAVA-ECVA Spring Meeting. Phoenix, AZ, USA; Proceedings: 2008: 26.
  • 16 Hammond RA, England GCW. The effect of medetomidine premedication upon propofol induction and infusion anaesthesia in the dog. Vet Anaesth Analg 1994; 21: 24-28.
  • 17 Haskins SC, Patz JD, Farver TB. Xylazine and xylazine-ketamine in dogs. Am J Vet Res 1986; 47: 636-641.
  • 18 Huang HH, Lee YH, Chan HL, Wang YP, Huang CH, Fan SZ. Using a short-term parameter of heart rate variability to distinguish awake from isoflurane anesthetic states. Med Bio Eng Comput 2008; 46: 977-984.
  • 19 James MK, Voung A, Grizzle MK, Schuster SV, Shaffer JE. Hemodynamic effects of GI 87084B, an ultra-short acting mu-opioid analgesic, in anesthetized dogs. J Pharmacol Exp Ther 1992; 263: 84-91.
  • 20 Kanaya N, Hirata N, Kurosawa S, Nakayama M, Namiki A. Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology 2003; 98: 34-40.
  • 21 Kästner SBR. Intravenous anaesthetics. In: BSAVA Manual of Canine and Feline Anaesthesia and Analgesia. British Small Animal Veterinary Association, Gloucester; England: 2007: 133-149.
  • 22 Kleiger RE, Bigger JT, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, Steinman R, Fleiss JL. Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol 1991; 68: 626-630.
  • 23 Kleiger RE, Stein PK, Bigger JT. Heart rate variability: Measurement and clinical utility. Ann Noninvasive Electrocardiol 2005; 10: 88-101.
  • 24 Koehler U, Becker HF, Grimm W, Heitmann J, Peter JH, Schäfer H. Relations among hypoxemia, sleep stage and bradyarrhythmia during obstructive sleep apnea. Am Heart J 1999; 139: 142-148.
  • 25 Kulka AM. Evaluation of anaesthetic depth, inhalant anaesthetic protocols and nociceptive stimulation via electroencephalographic and heart rate variability parameters in dogs. Dissertation. Tierärztliche Hochschule Hannover. 2010
  • 26 Langer S. Presynaptic regulation of the release of catecholamines. Pharmacol Rev 1981; 32: 337-362.
  • 27 Logier R, Jeanne M, De Jonckheere J, Dassonneville A, Delecroix M, Tavernier B. PhysioDoloris: a monitoring device for analgesia/nociception balance evalutation using heart rate variability analysis. 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentinien. Proceedings 2010; 1194-1197.
  • 28 Luginbühl M, Yppärilä-Wolters H, Rüfenacht M, Petersen-Felix S, Korhonen I. Heart rate variability does not discriminate between different levels of haemodynamic responsiveness during surgical anaesthesia. Br J Anaesth 2007; 98: 728-738.
  • 29 Mäenpää M, Laitio T, Kuusela T, Penttilä J, Kaisti K, Aalto S, Hinkka-YliSalomaki S, Scheinin H. Delta entropy of heart rate variability along with deepening anesthesia. Anaesth Analg 2011; 112: 587-592.
  • 30 Mäenpää M, Penttilä J, Laitio T, Kaisti K, Kuusela T, Hinkka S, Scheinin H. The effects of surgical levels of sevoflurane and propofol anaesthesia on heart rate variability. Eur J Anaesthesiol 2007; 24: 626-633.
  • 31 Manzo A, Ootaki Y, Ootaki C, Kamohara K, Fukamachi K. Comparative study of heart rate variability between healthy human subjects and healthy dogs, rabbits and calves. Lab Anim 2009; 43: 41-45.
  • 32 Matsunaga T, Harada T, Mitsui T, Inokuma M, Hashimoto M, Miyauchi M, Murano H, Shibutani Y. Spectral analysis of circadian rhythms in heart rate variability of dogs. Am J Vet Res 2001; 62: 37-42.
  • 33 Murrell JC, Hellebrekers LJ. Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properties in the dog. Vet Anaesth Analg 2005; 32: 117-127.
  • 34 Musk GC, Pang DSJ, Beths T, Flaherty DA. Target-controlled infusion of propofol in dogs – evaluation of four targets for induction of anaesthesia. Vet Rec 2005; 157: 766-770.
  • 35 Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. Hypertension 1995; 25: 1276-1286.
  • 36 Pickering AE, Boscan P, Paton JFR. Nociception attenuates parasympathetic but not sympathetic baroreflex via NK1 receptors in the rat nucleus tractus solitarii. J Physiol 2003; 551: 589-599.
  • 37 Pypendop BH, Verstegen JP. Hemodynamic effects of medetomidine in the dog: a dose titration study. Vet Surg 1998; 27: 612-622.
  • 38 Schneider G, Sebel PS. Monitoring depth of anaesthesia. Eur J Anaesth 1997; 14: 21-28.
  • 39 Sinclair MD. A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Can Vet J 2003; 44: 885-897.
  • 40 Tarvainen MP, Georgiadis S, Lipponen JA, Laitio T, Kaskinoro K, Scheinin H, Karjalainen PA. Analysis of heart rate variability dynamics during propofol anesthesia1. World Congress on Medical Physics and Biomedical Engineering, München, Deutschland. IFMBE Proceedings 2009; 25: 868-871.
  • 41 Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV – A software for advanced heart rate variability analysis. 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerpen, Belgien. IFMBE Proceedings 2008; 22: 1022-1025.
  • 42 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93: 1043-1065.
  • 43 Thurmon JC, Tranquilli WJ, Benson GJ. Considerations for general anesthesia. In: Lumb and Jones Veterinary Anesthesia. 3rd edn.. Baltimore, USA: Williams and Wilkins; 1996: 5-34.
  • 44 Toweill DL, Kovarik WD, Carr R, Kaplan D, Lai S, Bratton S, Goldstein B. Linear and nonlinear analysis of heart rate variability during propofol anaesthesia for short-duration procedures in children. Pediatr Crit Care Med 2003; 04: 308-314.
  • 45 Valverde A, Morey TE, Hernández WDavies. Validation of several types of noxious stimuli for use in determining the minimum alveolar concentration for inhalation anesthetics in dogs and rabbits. AJVR 2003; 64: 957-962.
  • 46 Voigt AM, Bergfeld C, Beyerbach M, Kästner SBR. Effects of isoflurane with and without dexmedetomidine or remifentanil on heart rate variability before and after nociceptive stimulation at different multiples of minimum alveolar concentration in dogs. AJVR 2013; 74: 665-671.
  • 47 Vuyk J. Clinical interpretation of pharmacokinetic and pharmacodynamic propofol-opioid interactions. Annual Meeting of the Belgian Society of Anesthesia and Resucitation, Brüssel, Belgien. Proceedings 2001; 52: 445-451.
  • 48 Win N, Fukayama H, Kohase H, Umino M. The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anesth Analg 2005; 101: 97-102.