Tierarztl Prax Ausg K Kleintiere Heimtiere 2017; 45(02): 77-83
DOI: 10.15654/TPK-160366
Originalartikel
Schattauer GmbH

Nervenverteilung und -verteilungsdichte in der Hüftgelenkskapsel des Hundes

Vergleichende Untersuchung gesunder und dysplastischer HüftgelenkeNerve distribution and density in the canine hip joint capsule. Comparison of healthy and dysplastic hip joints
Felix Giebels
1   Tierärztliche Praxis für Kleintiere PD Dr. med. vet. S. Kinzel, Aachen
,
Andreas Prescher
2   Institut für Molekulare und Zelluläre Anatomie, RWTH Aachen, Prosektur, Aachen
,
Stefan Wagenpfeil
3   Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg/Saar
,
Arno Bücker
4   Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar
,
Sylvia Kinzel
1   Tierärztliche Praxis für Kleintiere PD Dr. med. vet. S. Kinzel, Aachen
› Author Affiliations
Further Information

Publication History

Eingegangen: 26 March 2016

Akzeptiert nach Revision: 02 February 2016

Publication Date:
08 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: Die Hüftgelenkskapsel unterliegt bei der Hüftgelenksdysplasie (HD) erhöhten Zugkräften, die zu einer Entzündung des Kapselgewebes führen. Eine entzündungsassoziierte Zunahme der Nervenverteilungsdichte wurde in verschiedenen Organen nachgewiesen und könnte auch im Rahmen einer HD Ursache für Hüftgelenksschmerz und Koxarthrose sein. Ziel dieser Studie war, bei Hunden mit normo- bzw. dysplastischen Hüftgelenken Unterschiede in der Nervenverteilungsdichte innerhalb der Hüftgelenkskapsel aufzuzeigen. Material und Methoden: Bei 16 aus anderen Gründen euthanasierten Labrador Retrievern erfolgte anhand des radiologischen Befunds eine Kate gorisierung der Hüftgelenke als normoplastisch (Gruppe 1, n = 18) oder dysplastisch (Gruppe 2, n = 14). Die histologischen Präparate der Hüftgelenkskapseln wurden nach Färbung der Nerven fasern mit der Sihler-Färbemethode eingescannt und mittels einer Matrix in 10 gleich große Quadranten, nummeriert von dorsomedial (Q01) nach kraniodorsolateral (Q10), unterteilt. Durch Berechnung des prozentualen Anteils schwarzer Pixel mittels halbautomatischer Bildanalyse wurde die Nervenverteilungsdichte für jeweils das gesamte Präparat und die einzelnen Quadranten analysiert. Der statistische Vergleich erfolgte mittels t-Test für unabhängige Stichproben. Ergebnisse: Bei Hunden mit HD zeigte sich im kraniodorsolateralen Anteil der Hüftgelenkskapsel eine signifikant höhere Nervenverteilungsdichte (p = 0,03). Die mittlere Nervenverteilungsdichte für die gesamte Hüftgelenkskapsel differierte zwischen den beiden Gruppen nicht signifikant. Schlussfolgerung: Eine erhöhte Nervenverteilungsdichte im kraniodorsalen Anteil der Hüftgelenkskapsel bei Hunden mit HD könnte Folge der großen Zugkräfte in diesem Bereich und eine Ursache für die mit der HD einhergehende Schmerzhaftigkeit und Koxarthrose sein. Klinische Relevanz: Die Ergebnisse liefern die pathophysiologische Grundlage für den Erfolg der Deperiostierung des kranialen Azetabulumrandes im Rahmen einer Hüftgelenksdenervation zur Erzielung einer suffizienten Schmerzlinderung und Entzündungsreduktion bei Hunden mit HD.

Summary

Objective: The hip-joint capsule is exposed to increased tension forces during canine hip dysplasia, resulting in inflammation of the capsular tissue. It has been postulated that inflammation is associated with an increased nerve-distribution density. Therefore, it could be supposed that the nerve-distribution density in the hip-joint capsule is higher in dogs with dysplastic hip compared to healthy dogs. Material and methods: In 16 Labrador Retriever dogs that had been euthanised due to unrelated reasons, the hip joints were classified as normoplastic (group 1, n = 18) or dysplastic (group 2, n = 14) based on radiography. Following staining of the capsular nerve fibres by the Sihler method, histological specimens of the hip-joint capsules were scanned. By subdividing each specimen into 10 quadrants numbered from dorsomedial (Q01) to craniodorsolateral (Q10), the ratio of black to white pixels was calculated digitally for each specimen and each quadrant by using a semiautomatic image analysis. Statistical analysis was performed using an independent t-test. Results: Comparison of the mean values of each quadrant showed a significantly higher (p < 0.03) nerve distribution density for the craniodorsolateral quadrant (Q10) in group 2 when compared to group 1. Mean nerve-distribution density for all quadrants combined was not significantly different between the two groups. Conclusion: The increase in nervedistribution density of the craniodorsal region of the hip-joint capsule in dogs with dysplastic hip could be the result of increased tension forces on this area following hip-joint dysplasia. The craniodorsal region of the hip-joint capsule is an important origin of pain and coxarthrosis in canine hip dysplasia. Clinical relevance: The results provide the pathophysiological basis for the efficacy of hip-joint denervation. Denervation of the cranial region of the acetabular rim is essential to reduce capsular inflammation and joint-related pain in canine hip dysplasia.

 
  • Literatur

  • 1 Ahmed M, Bergstrom J, Lundblad H, Gillespie W, Kreicbergs A. Sensory nerves in the interface membrane of aseptic loose hip prostheses. J Bone Joint Surg (Br) 1998; 80B (01) 151-155.
  • 2 Albers KM, Wright DE, Davis BM. Overexpression of nerve growth factor in epidermis of transgenic mice causes hypertrophy of the peripheral nervous system. J Neurosci 1994; 14 (03) (Suppl. 02) 1422-1432.
  • 3 Alfredson H, Ohberg L, Forsgren S. Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis? An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg Sports Traumatol Arthrosc 2003; 11 (05) 334-338.
  • 4 Basher AWP, Walter MC, Newton CD. Coxofemoral luxation in the dog and cat. Vet Surg 1986; 15 (05) 356-362.
  • 5 Beaman DN, Graziano GP, Glover RA, Wojtys EM, Chang V. Substance P innervation of lumbar spine facet joints. Spine 1993; 18 (08) 1044-1049.
  • 6 Braun D, Lautersack O, Schimke E, Gentsch-Braun D. Dorsal denervation of the hip joint capsule in dogs –- Findings of a long running survey. Kleintierprax 2003; 48 (04) 211.
  • 7 Brown M, Hukkanen M, McCarthy I, Redfern D, Batten J, Crock H. et al. Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Joint Surg (Br) 1997; 79B (01) 147-153.
  • 8 Brunnberg L, Waibl H, Lehmann J. Hüftgelenksdysplasie. In: Lahmheit beim Hund. Kleinmachnow: Procane Claudo Brunnberg; 2014: 424-444.
  • 9 Chakrabarty A, McCarson KE, Smith PG. Hypersensitivity and hyperinnervation of the rat hind paw following carrageenan-induced inflammation. Neurosci Lett 2011; 495 (01) 67-71.
  • 10 Collard F, Maitre P, Le Quang T, Fau D, Carozzo C, Genevois J. et al. Canine hip denervation: comparison between clinical outcome and gait analysis. Rev Med Vet 2010; 161 (06) 277-282.
  • 11 Demir IE, Schaefer K, Tieftrunk E, Friess H, Ceyhan GO. Neural plasticity in the gastrointestinal tract: chronic inflammation, neurotrophic signals, and hypersensitivity. Acta Neuropathol 2013; 125 (04) 491-509.
  • 12 Dickson A, Avelino A, Cruz F, Ribeiro-da-Silva A. Peptidergic sensory and parasympathetic fiber sprouting in the mucosa of the rat urinary bladder in a chronic model of cyclophosphamide-induced cystitis. Neuroscience 2006; 141 (03) 1633-1647.
  • 13 Dudek A, Chroszcz A, Janeczek M, Sienkiewicz W, Kaleczyc J. Sources of sensory innervation of the hip joint capsule in the rabbit – a retrograde tracing study. Anat Histol Embryol 2013; 42 (06) 403-409.
  • 14 Forterre F, Jaggy A, Malik Y, Howard J, Ruefenacht S, Spreng D. Non-selective cutaneous sensory neurectomy as an alternative treatment for automutilation lesion following arthrodesis in three dogs. Vet Comp Orthop Traumatol 2009; 22 (03) 233-237.
  • 15 Freemont A, Peacock T, Goupille P, Hoyland J, OBrien J, Jayson M. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 1997; 350 (9072): 178-181.
  • 16 Garcia-Cosamalon J, del Valle ME, Calavia MG, Garcia-Suarez O, Lopez-Muniz A, Otero J. et al. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain?. J Anat 2010; 217 (01) 1-15.
  • 17 Gasse H, Engelke E, Waibl H. Innervation of the canine hip joint capsule. Kleintierprax 1996; 41 (12) 883-886.
  • 18 Gronblad M, Korkala O, Konttinen Y, Nederstrom A, Hukkanen M, Tolvanen E. et al. Silver impregnation and immunohistochemical study of nerves in lumbar facet joint plical tissue. Spine 1991; 16 (01) 34-38.
  • 19 Haversath M, Hanke J, Landgraeber S, Herten M, Zilkens C, Krauspe R. et al. The distribution of nociceptive innervation in the painful hip. A histological investigation. Bone Joint J 2013; 95B (06) 770-776.
  • 20 Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 1988; 24 (03) 739-768.
  • 21 Huang CH, Hou SM, Yeh LS. The distribution of nociceptive innervation in the painful hip: a histological investigation. Anat Histol Embryol 2013; 42 (06) 425-431.
  • 22 Jancso N, Jancso-Gabor A, Szolcsanyi J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother 1967; 31 (01) 138-151.
  • 23 Jones W, Baker L. Denervation as a means of treating chronic hip pain. South Med J 1962; 55 (01) 4-9.
  • 24 Kallakuri S, Singh A, Lu Y, Chen C, Patwardhan A, Cavanaugh JM. Tensile stretching of cervical facet joint capsule and related axonal changes. Eur Spine J 2008; 17 (04) 556-563.
  • 25 Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels 2003; 18 (01) 32-39.
  • 26 Kim Y, Azuma H. The nerve-endings of the acetabular labrum. Clin Orthop 1995; (320): 176-181.
  • 27 Kinkelin I, Moetzing S, Koltzenburg M, Broecker E. Increase in NGF content and nerve fiber sprouting in human allergic contact eczema. Cell Tissue Res 2000; 302: 31-37.
  • 28 Kinzel S, Fasselt R, Prescher A, Selzer C, von Keyserlingk DG, Küpper W. Innervation of the canine hip joint capsule. Tierärztl Prax 1998; 26 (K): 330-335.
  • 29 Kinzel S, Hein S, von Scheven C, Küpper W. 10 years experience with denervation of the hip joint capsule for treatment of canine hip joint dysplasia and arthrosis. Berl Münch Tierärztl Wochenschr 2002; 115 (1–2): 53-56.
  • 30 Kinzel S, Von Scheven C, Buecker A, Stopinski T, Küpper W. Clinical evaluation of denervation of the canine hip joint capsule: a retrospective study of 117 dogs. Vet Comp Orthop Traumatol 2002; 15 (01) 51-56.
  • 31 Leslie TA, Emson PC, Dowd PM, Woolf CJ. Nerve growth factor contributes to the up-regulation of growth-associated protein 43 and preprotachykinin a messenger RNAs in primary sensory neurons following peripheral inflammation. Neuroscience 1995; 67 (03) 753-761.
  • 32 Linnemann SM. Anatomie des Hüftgelenks. In: Die Hüftgelenksdysplasie des Hundes. Berlin: Parey; 1998: 3-8.
  • 33 Lister SA, Roush JK, Renberg WC, Stephens CL. Ground reaction force analysis of unilateral coxofemoral denervation for the treatment of canine hip dysplasia. Vet Comp Orthop Traumatol 2009; 22 (02) 137-141.
  • 34 Liu J, Kumar VP, Shen Y, Lau HK, Pereira BP, Pho RWH. Modified Sihler’s technique for studying the distribution of intramuscular nerve branches in mammalian skeletal muscle. Anat Rec 1997; 247 (01) 137-144.
  • 35 Mu L, Sanders I. Sihler’s whole mount nerve staining technique: a review. Biotech Histochem 2010; 85 (01) 19-42.
  • 36 Mulder J. Denervation of the hip joint in osteoarthritis. J Bone Joint Surg (Br) 1948; 30 (03) 446-448.
  • 37 Olmarker K. Neovascularization and neoinnervation of subcutaneously placed nucleus pulposus and the inhibitory effects of certain drugs. Spine 2005; 30 (13) 1501-1504.
  • 38 Peterson H, Winkelmann R, Coventry M. Nerve endings in the hip joint of the cat: their morphology, distrubution, and density. J Bone Joint Surg (Am) 1972; 54 (02) 333-343.
  • 39 Piermattei DL, Flo GL, DeCamp CE. The hip joint. In: Brinker, Piermattei and Flo’s Handbook of Small Animal Orthopedics and Fracture Repair. Piermattei DL, Flo GL, DeCamp CE. eds. St. Louis: Saunders Elsevier; 2006: 461-511.
  • 40 Reinert A, Kaske A, Mense S. Inflammation-induced increase in the density of neuropeptide-immunoreactive nerve endings in rat skeletal muscle. Exp Brain Res 1998; 121 (02) 174-180.
  • 41 Riser W, Rhodes W, Newton C. Hip dysplasia: theories of pathogenesis. In: Textbook of Small Animal Orthopedics. Newton CD, Nunamaker DM. eds. Philadelphia: Lippincott; 1985: 953-980.
  • 42 Rivera F, Mariconda C, Annaratone G. Percutaneous radiofrequency denervation in patients with contraindications for total hip arthroplasty. Orthopedics 2012; 35 (03) E302-E305.
  • 43 Robertsson O, Wingstrand H, Onnerfalt R. Intracapsular pressure and pain in coxarthrosis. J Arthroplasty 1995; 10 (05) 632-635.
  • 44 Ronchi G, Nicolino S, Raimondo S, Tos P, Battiston B, Papalia I. et al. Functional and morphological assessment of a standardized crush injury of the rat median nerve. J Neurosci Methods 2009; 179 (01) 51-57.
  • 45 Sanchis-Alfonso V, Rosello-Sastre E. Immunohistochemical analysis for neural markers of the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment – A neuroanatomic basis for anterior knee pain in the active young patient. Am J Sports Med 2000; 28 (05) 725-731.
  • 46 Saxler G, Brankamp J, von Knoch M, Loer F, Hilken G, Hanesch U. The density of nociceptive SP- and CGRP-immunopositive nerve fibers in the dura mater lumbalis of rats is enhanced after laminectomy, even after application of autologous fat grafts. Eur Spine J 2008; 17 (10) 1362-1372.
  • 47 Schmaedecke A, Saut JPE, Ferrigno CRA. A quantitative analysis of the nerve fibres of the acetabular periosteum of dogs. Vet Comp Orthop Traumatol 2008; 21 (05) 413-417.
  • 48 Schubert T, Weidler C, Lerch K, Hofstaedter F, Straub R. Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann Rheum Dis 2005; 64 (07) 1083-1086.
  • 49 Smith GK, Karbe GT, Agnello KA, McDonald-Lynch MB. Coxofemoral denervation. In: Veterinary Surgery Small Animal. Vol. I. Tobias KM, Johnston SA. eds. St. Louis, Missouri: Elsevier Saunders; 2012: 863.
  • 50 Staszyk C, Gasse H. The innervation of the joint capsules in the dog. Part 3: hip joint. Kleintierprax 2002; 47 (01) 11-17.
  • 51 Suri S, Gill SE, Massena de Camin S, Wilson D, McWilliams DF, Walsh DA. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis 2007; 66 (11) 1423-1428.
  • 52 Veizi E, Hayek S. Interventional therapies for chronic low back pain. Neuro modulation 2014; 17: 31-45.
  • 53 Wingstrand H, Wingstrand A. Biomechanics of the hip joint capsule – A mathematical model and clinical implications. Clin Biomech 1997; 12 (05) 273-280.
  • 54 Zimny M. Mechanoreceptors in articular tissues. Am J Anat 1988; 182 (01) 16-32.