Tierarztl Prax Ausg K Kleintiere Heimtiere 2018; 46(02): 73-82
DOI: 10.15654/TPK-170713
Originalartikel – Original Articles
Schattauer GmbH

Vergleich der Effizienz von Polyhexanid-Biguanid, Argon-Kaltplasma und Kochsalzlavage zur Dekontamination von Bisswunden beim Hund

Comparison of the antibacterial efficacy of polyhexanide, cold atmospheric argon plasma and saline in the treatment of canine bite wounds
Selina Winter
1   Chirurgische und Gynäkologische Kleintierklinik, Ludwig-Maximilians-Universität, München
,
Mirja Christine Nolff
1   Chirurgische und Gynäkologische Kleintierklinik, Ludwig-Maximilians-Universität, München
,
Sven Reese
2   Institut für Anatomie, Ludwig-Maximilians-Universität, München
,
Andrea Meyer-Lindenberg
1   Chirurgische und Gynäkologische Kleintierklinik, Ludwig-Maximilians-Universität, München
› Author Affiliations
Further Information

Publication History

Eingegangen: 06 November 2017

Akzeptiert nach Revision: 26 February 2018

Publication Date:
04 May 2018 (online)

Zusammenfassung

Ziel der Studie war, die Keimbelastung sowie die klinische Effizienz von Polyhexanid, Argon-Kaltplasma und Kochsalzlösung zur Reduktion der Bioburden bei Hundebissverletzungen zu überprüfen.

Material und Methoden: In die Studie eingeschlossen wurden Hunde mit Bissverletzungen, die durch ein chirurgisches Debridement mit anschließender Wundbehandlung durch Lavage mit Polyhexanid-Biguanid (A), Therapie mit kaltem Argonplasma (B) oder Lavage mit physiologischer Kochsalzlösung (C) versorgt wurden. Ein bakterieller Abstrich erfolgte bei allen Patienten nach Debridement sowie nach der Lavage bzw. Behandlung mit Argon-Kaltplasma. Zur Auswertung der Resultate diente der Chi-Quadrat-Test.

Ergebnisse: Insgesamt 40 Hunde gingen in die Studie ein (A: n = 12; B: n = 10; C: n = 18). Bei einem Großteil der Verletzungen handelte es sich um geringfügige Bisswunden. Ein Keimnachweis ergab sich bei 87,5% aller Patienten, wobei 19,8% aller Isolate als multiresistent klassifiziert wurden. Eine Reduktion der Keimlast durch Lavage wurde bei 8/12 Hunden der Gruppe A, 5/10 Hunden der Gruppe B und 14/18 Hunden der Gruppe C erreicht. Eine komplette Dekontamination durch Lavage gelang bei 5/12 Hunden der Gruppe A, 2/10 der Gruppe B und 9/18 der Gruppe C. Statistisch signifikante Unterschiede oder Effekte auf spätere Komplikationen waren nicht festzustellen.

Schlussfolgerung: Zwischen den verschiedenen Lavagekonzepten bestanden keine statistisch signifikanten Unterschiede, doch wurde in der Kaltplasma-Gruppe die geringste Dekontamination erzielt.

Klinische Relevanz: Bei Bissverletzungen ist von einer hohen Keimbelastung auszugehen. Zudem werden zunehmend multiresistente Isolate nachgewiesen. Basierend auf diesen ersten Ergebnissen ließ sich keine Überlegenheit von Polyhexanid oder Kaltplasma gegenüber physiologischer Kochsalzlösung zur Wundlavage nachweisen.

Summary

Objective: To evaluate the bacterial contamination rate and to compare the efficacy of polyhexanide, cold argon plasma and saline at reducing bacterial bio-burden in dog bite wounds.

Material and methods: Dogs with bite-wound injuries were included when surgical debridement was pursued with subsequent treatment using either polyhexanide-biguanide lavage (A), cold argon plasma treatment (B) or saline lavage (C). Culture swabs were taken after debridement as well as after lavageor argon treatment. Statistical analysis was performed using the chi-square test.

Results: A total of 40 dogs were enrolled in the study (A: n = 12; B: n = 10; C: n = 18). The majority of injuries were minor and 87.5% of patients had positive bacterial culture results pre-lavage, with 19.8% of isolates classified as multidrug resistant. A reduction in wound bioburden was achieved in 8/12 patients in group A, 5/10 patients in group B and 14/18 patients in group C. Complete decontamination was achieved in 5/12 patients in group A, 2/10 in group B and 9/18 in group C. None of these differences were statistically significant nor associated with the development of complications.

Conclusion: No statistically significant differences were detected between the treatment groups; however, the cold argon plasma treatment provided the least effective decontamination.

Clinical relevance: Bite wounds yield a high rate of bacterial contamination, with increasing multidrug-resistance rates. Based on these preliminary results, no superior effect was detected for lavage using polyhexanidebiguanide or cold argon plasma.

 
  • Literatur

  • 1 Allen MJ, White GF, Morby AP. The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. Microbiology 2006; 152: 989-1000.
  • 2 Assadian O. From antiseptics to antibiotics - and back?. GMS Krankenhhyg Interdiszip. 2007 02. Doc26.
  • 3 Banovic F, Bozic F, Lemo N. In vitro comparison of the effectiveness of polihexanide and chlorhexidine against canine isolates of Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Malassezia pachydermatis. Vet Dermatol 2013; 24: 409-13 e88-9.
  • 4 Beier RC, Foley SL, Davidson MK. et al. Characterization of antibiotic and disinfectant susceptibility profiles among Pseudomonas aeruginosa veterinary isolates recovered during 1994-2003. J Appl Microbiol 2015; 118: 326-342.
  • 5 Bender C, Partecke LI, Kindel E. et al The modified HET-CAM as a model for the assessment of the inflammatory response to tissue tolerable plasma. Toxicology in vitro 2011; 25: 530-537.
  • 6 Bhardwaj P, Ziegler E, Palmer KL. Chlorhexidine Induces VanA-Type Vancomycin Resistance Genes in Enterococci. Antimicrob Agents Chemother 2016; 60: 2209-2221.
  • 7 Cabon Q, Deroy C, Ferrand F. et al. Thoracic bite trauma in dogs and cats: a retrospective study of 65 cases. Vet Comp Orthop Traumatol 2015; 28: 448-454.
  • 8 Chindera K, Mahto M, Kuma ASharma. et al The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Sci Rep 2016; 06: 231-250.
  • 9 Cowell P, Penwick R. Dog bite wounds: A study of 93 cases. Compend Contin Educ Pract Vet 1989; 11: 313-20.
  • 10 Daeschlein G, Scholz S, Von Woedcke T. et al. Cold plasma antisepsis for skin and wounds: a new antimicrobial concept in dermatology. Exp Dermatol 2012; 21: e39-e39.
  • 11 Daeschlein G. Antimicrobial and antiseptic strategies in wound management. Int Wound J 2013; 10 (Suppl. 01) 9-14.
  • 12 Dire DJ, Welsh AP. A comparison of wound irrigation solutions used in the emergency department. Ann Emerg Med 1990; 19: 704-708.
  • 13 Eberlein T, Assadian O. Clinical use of polihexanide on acute and chronic wounds for antisepsis and decontamination. Skin Pharmacol Physiol 2010; 23: 45-51.
  • 14 European Centre for Disease Prevention and Control (2014). http://ecdc.eu-ropa.eu/en/activities/diseaseprogrammes/ARHAI/Pages/index.aspx [Zugriffam 9. September 2017]
  • 15 Fahie MA, Shettko D. Evidence-based wound management: a systematic review of therapeutic agents to enhance granulation and epithelialization. Vet Clin North Am Small Anim Pract 2007; 37: 559-577.
  • 16 Flynn PB, Higginbotham S, Alshraiedeh NH. et al Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int J Antimicrob Agents 2015; 46: 101-107.
  • 17 Gandolfi-Dechristophoris P, Regula P, Petrini O. et al Prevalence and risk factors for carriage of multidrug resistant Staphylococci in healthy cats and dogs. J Vet Sci 2013; 14 (04) 449-456.
  • 18 Hammann A, Huebner NO, Bender C. et al Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol Physiol 2010; 23: 328-332.
  • 19 Holt DE, Griffin G. Bite wounds in dogs and cats. Vet Clin North Am Small Anim Pract 2000; 30: 669-673.
  • 20 Kaehn K. Polihexanide: a safe and highly effective biocide. Skin Pharmacol Physiol 2010; 23 Suppl: 7-16.
  • 21 Koban I, Holtfreter B, Hubner NO. et al Antimicrobial efficacy of nonthermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. J Clin Periodontol 2011; 38: 956-965.
  • 22 Koburger T, Hubner NO, Braun M. et al. Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother 2010; 65: 1712-1719.
  • 23 Kramer A, Roth B, Muller G. et al Influence of the antiseptic agents polyhexanide and octenidine on FL cells and on healing of experimental superficial aseptic wounds in piglets. A double-blind, randomised, stratified, controlled, parallel-group study. Skin Pharmacol Physiol 2004; 17: 141-146.
  • 24 Laroussi M. Low-Temperature Plasmas for Medicine?. Ieee Transactions on Plasma Science 2009; 37: 714-725.
  • 25 Lozier S, Pope E, Berg J. Effects of four preparations of 0.05 % chlorhexidine diacetate on wound healing in dogs. Vet Surg 1992; 21: 107-112.
  • 26 Sanchez IR, Swaim SF, Nusbaum KE. et al. Effects of chlorhexidine diacetate and povidone-iodine on wound healing in dogs. Vet Surg 1988; 17: 291-295.
  • 27 Matthes R, Luhrmann A. Holtfretter et al Antibacterial activity of cold atmospheric pressure argon plasma against 78 genetically different (mecA, luk-P, agr or capsular polysaccharide type) Staphylococcus aureus strains. Skin Pharmacol Physiol 2016; 29: 83-91.
  • 28 Meyers B, Schoemann JP, Goddard A. et al. The bacteriology and antimicrobial susceptibility of infected and non-infected dog bite wounds: fifty cases. Vet Microbiol 2008; 127: 360-368.
  • 29 Mouro S, Vilela CL, Niza MM. Clinical and bacteriological assessment of dog-to-dog bite wounds. Vet Microbiol 2010; 144: 127-132.
  • 30 Muller G, Kramer A. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother 2008; 61: 1281-1287.
  • 31 Nolff MC, Reese S, Fehr M. et al Assessment of wound bio-burden and prevalence of multi-drug resistant bacteria during open wound management. J Small Anim Pract 2016; 57: 255-259.
  • 32 Roth B, Assadian O, Wurmitzer F. et al. Surgical site infections after primary antiseptic cleansing of dirty-contaminated wounds by polihexanide, PVP iodine resp. hydrogen peroxide. GMS Krankenhaushyg Interdiszip. 2007 02. Doc58.
  • 33 Shamir MH, Leisner S. Klement et al Dog bite wounds in dogs and cats: a retrospective study of 196 cases. J Vet Med A Physiol Pathol Clin Med 2002; 49: 107-112.
  • 34 Uchiyama H, Zhao QL, Hassan MA. et al. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu. PLoS ONE 10 (08) e0136956.
  • 35 Von Woedtke T, Reuter S, Masur K. et al. Plasmas for medicine. Physics Reports 2013; 530: 291-320.
  • 36 Weese JS. A review of multidrug resistant surgical site infections. Vet Comp Orthop Traumatol 2008; 21: 1-7.
  • 37 Willy C. Antiseptics in Surgery. 1st edn. Stockholm: Linquist Book Publishing; 2013