Subscribe to RSS

DOI: 10.1590/0004-282X-ANP-2020-0580
Functionality and disease severity in spinocerebellar ataxias
Relação entre a função e a gravidade nas ataxias espinocerebelares
ABSTRACT
Background: Spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases characterized by deterioration of balance and functionality that tends to follow disease progression. There is no established link between formal clinical markers for severity and functional/balance scores that could guide rehabilitation teams. Objective: To evaluate the relationship between functional scales and ataxia severity in order to identify cutoff landmarks for functional loss and estimate the mean SARA (Scale for Assessment and Rating of Ataxia) score for the risk ratings for falls on the BBS (Berg Balance Scale). Methods: Consecutive patients with a molecular diagnosis of SCA (total 89: 31 with SCA2 and 58 with SCA3) were assessed for functionality FIM-ADL (Functional Independence Measure-activities of daily living and Lawton-IADL (instrumental activities of daily living), balance (BBS) and disease severity (SARA). Results: The main disability cutoff landmarks were that the need for supervision for FIM-ADL starts with 12 points on SARA and the need for supervision for Lawton-IADL starts with 14 points on SARA. The first items to require assistance were “expression” and “shopping”, respectively. At 20 points on SARA, patients were dependent on all FIM and Lawton items. The item with the greatest impact on distinguishing dependents from independents was “means of transport” in Lawton-IADL and the domain “locomotion” in FIM-ADL. The mean SARA score for patients classified as low risk in the BBS was 9.9 points, and it was 17.4 for medium risk and 25.2 for high risk. Conclusions: Analysis on the correlation between the severity of ataxia and functional scales can form an important guide for understanding the progression of functional dependence among individuals with SCAs.
RESUMO
Antecedentes: As ataxias espinocerebelares (SCA) são um grupo de doenças neurodegenerativas caracterizadas pela deterioração do equilíbrio e da funcionalidade, que tende a acompanhar a progressão da doença. Não existe uma ligação estabelecida entre os marcadores clínicos formais de gravidade e escores funcionais e de equilíbrio que possam orientar as equipes de reabilitação. Objetivo: Avaliar a relação entre escalas funcionais e de gravidade da ataxia, buscando identificar pontos de corte para a perda funcional relacionados aos escores de gravidade e aos patamares de Risco de Quedas. Métodos: Uma amostra consecutiva de 89 pacientes com diagnóstico molecular de SCA (31-SCA2 e 58-SCA3) foram avaliados para funcionalidade MIF-AVDs (Medida de independência funcional-Atividades da vida diária) e Lawton-AIVDs (Atividades instrumentais da vida diária), equilíbrio (EEB-escala de Equilíbrio de Berg), e gravidade da ataxia (SARA-escala para avaliação e graduação de ataxia). Resultados: Os principais pontos de corte de deficiência foram: com 12 pontos no SARA começa a necessidade de supervisão para MIF-AVDs e com 14 pontos no SARA começa a necessidade de supervisão para Lawton-AIVDs. Os primeiros itens a necessitar de assistência foram “expressão” e “compras”, respectivamente. Com 20 pontos no SARA os pacientes eram dependentes em todos os itens MIF/LAWTON. O item com maior impacto na discriminação entre dependentes e independentes foi “meio de transporte” na Lawton e o domínio “locomoção” na MIF. O escore médio no SARA foi de 9,9 pontos para pacientes classificados com baixo risco na EEB, 17,4 para médio risco e 25,2 para alto risco. Conclusões: A análise da correlação entre a gravidade da ataxia e as escalas funcionais pode ser um importante guia no entendimento da progressão da dependência funcional em indivíduos com SCA.
Keywords:
Spinocerebellar Ataxias - Severity of Illness Index - Postural Balance - Functional Residual CapacityPalavras-chave:
Ataxias Espinocerebelares - Índice de Gravidade de Doença - Equilíbrio Postural - Capacidade Residual FuncionalAuthors’ contributions:
GCC: contributed to the study design, data acquisition, statistical analysis, data interpretation and drafting of the manuscript; MBZ: contributed to the study design, data acquisition, data analysis, data interpretation and preparation and critical review of the manuscript; RPM: contributed to the evaluation of the data and critical review of the manuscript; NMM, ATM: contributed to the study design, data analysis and interpretation of the results; MCAN, NTGA, FDNLN: contributed to the data analysis and interpretation of the results; CHFC: contributed to the statistical analysis, interpretation of the results and critical review of the manuscript; HAGT: contributed to the study design, evaluation of the data and critical review of the manuscript.
Publication History
Received: 07 January 2021
Accepted: 27 February 2021
Article published online:
30 January 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R. et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol 2015; Nov; 14 (11) 1101-1108 https://doi.org/10.1016/S1474-4422(15)00202-1
- 2 Genis D, Ortega-Cubero S, San Nicolás H, Corral J, Gardenyes J, Jorge L. et al. HeterozygousSTUB1 mutation causes familial ataxia with cognitive affective syndrome (SCA48). Neurology 2018; Nov; 91 (21) e1988-e1998 https://doi.org/10.1212/WNL.20200580202005806550
- 3 Teive HAG, Ashizawa T. Primary and secondary ataxias. Curr Opin Neurol 2015; Aug; 28 (04) 413-422 https://doi.org/10.1097/WCO.20200580202005800227
- 4 Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype: a review. Clin Genet 2016; Oct; 90 (04) 305-314 https://doi.org/10.1111/cge.12808
- 5 Aizawa CYP, Pedroso JL, Braga-Neto P, Callegari MR, Barsottini OGP. Patients with autosomal dominant spinocerebellar ataxia have more risk of falls, important balance impairment, and decreased ability to function. Arq Neuro-Psiquiatr 2013; Aug; 71 (08) 508-511 https://doi.org/10.1590/0004-282X20130094
- 6 Lin YC, Lee YC, Hsu TY, Liao YC, Soong BW. Comparable progression of spinocerebelar ataxias between caucasians and chinese. Parkinsonism Relat Disord 2019; May; 62: 156-162 https://doi.org/10.1016/j.parkreldis.2018.12.023
- 7 Amarante TRP, Takeda SYM, Teive HAG, Zonta MB. Impact of disease duration on functional status of patients with spinocerebellar ataxia type 2. Arq Neuro-Psiquiatr 2017; Nov; 75 (11) 773-777 https://doi.org/10.1590/0004-282X20170146
- 8 Santos RL, Teive HAG, Lopes Neto FDN, Macedo ACB, Mello NM, Zonta MB. Quality of life in individuals with spinocerebellar ataxia type 10: a preliminary study. Arq Neuro-Psiquiatr 2018; Aug; 76 (08) 527-533 https://doi.org/10.1590/0004-282X20180077
- 9 Kazimierska-Zajac Magdalena, Dymarek R, Rosinczuk J. Quality of life and the degree of disease acceptance in patients with spinocerebellar ataxia. JNNN 2018; 7 (01) 12-21 https://doi.org/10.15225/PNN.2018.7.1.2
- 10 Nascimento FA, Rodrigues VOR, Pelloso FC, Camargi CHF, Moro A, Raskin S. et al. Spinocerebelar ataxias in Southern Brazil: Genotypic and phenotypic evaluation of 213 families. Clin Neurol Neurosurg 2019; Sep; 184: 105427-105427 https://doi.org/10.1016/j.clineuro.2019.105427
- 11 Yabe I, Matsushima M, Soma H, Basri R, Sasaki H. Usefulness of the Scale for Assessment and Rating of Ataxia (SARA). J Neurol Sci 2008; Mar; 266(1-2) 164-166 https://doi.org/10.1016/j.jns.2007.09.021
- 12 Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OGP. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuro-Psiquiatr 2010; Apr; 68 (02) 228-230 https://doi.org/10.1590/s0004-282x2010000200014
- 13 Miyamoto ST, Lombardi Junior I, Berg KO, Ramos LR, Natour J. Brazilian version of the Berg balance scale. Braz J Med Biol Res 2004; Sep; 37 (09) 1411-1421 https://doi.org/10.1590/S0100-879X2004000900017
- 14 Riberto M, Miyazaki MH, Jucá SSH, Sakamoto H, Pinto PPN, Battistella LR. Validação da Versão Brasileira da Medida de Independência Funcional. Acta Fisiatr 2004; Aug; 11 (02) 72-76 https://doi.org/10.59355/0104-7795.20040003
- 15 Santos RL dos, Júnior JSV. Confiabilidade da versão brasileira da escala de atividades instrumentais da vida diária. Rev Bras Promoç Saúde 2012; Jan; 21 (04) 290-296 https://doi.org/10.5020/575
- 16 Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012; Sep; 24 (03) 69-71
- 17 Buchholz DW. Neurogenic dysphagia: What is the cause when the cause is not obvious?. Dysphagia Fall 1994; 9 (04) 245-255 https://doi.org/10.1007/BF00301918
- 18 Busanello AR, Castro SAFN, Alves Rosa AA. Disartria e doença de Machado-Joseph: relato de caso. Rev Soc Bras Fonoaudiol 2007; Sep; 12 (03) 247-251 https://doi.org/10.1590/S1516-80342007000300013
- 19 Spencer KA, Slocomb DL. The neural basis of ataxic dysarthria. Cerebellum 2007; Mar; 6 (01) 58-65 https://doi.org/10.1080/14734220601145459
- 20 Argyropoulos GPD, Van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M. et al. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum 2020; Feb; 19 (01) 102-125 https://doi.org/10.1007/s12311-019-01068-8
- 21 Lirani-Silva C, Mourão LF, Gobbi LTB. Disartria e Qualidade de vida em idosos neurologicamente sadios e pacientes com doença de Parkinson. CoDAS 2015; May-Jun; 27 (03) 248-254 https://doi.org/10.1590/2317-1782/20152014083
- 22 Melo Filho J, Bazanella NV, Vojciechowski AS, Costa ERR, Mackenzie L, Gomes ARS. The Home Fast Brazil sel-report version. Adv Rheumatol 2020; 60: 27-27 https://doi.org/10.1186/s42358-020-00130-y
- 23 Moreira RC, Zonta MB, Araújo APS, Israel VL, Teive HAG. Quality of life in Parkinson’s disease patients: progression markers of mild to moderate stages. Arq Neuro-Psiquiatr 2017; Aug; 75 (08) 497-502 https://doi.org/10.1590/0004-282X20170091
- 24 Winser SJ, Smith C, Hale LA, Claydon LS, Whitney SL. Balance outcome measures in cerebellar ataxia: a Delphi survey. Disabil Rehabil 2015; 37 (02) 165-170 https://doi.org/10.3109/09638288.2014.913709
- 25 van de Warrenburg BCP, Steijns JAG, Munneke M, Kremer BPH, Bloem BR. Falls in degenerative cerebellar ataxias. Mov Disord 2005; Apr; 20 (04) 497-500 https://doi.org/10.1002/mds.20375
- 26 Fonteyn EMR, Schmitz-Hübsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S. et al. Falls in spinocerebellar ataxias: results of the EuroSCA Fall Study. Cerebellum 2010; Jun; 9 (02) 232-239 https://doi.org/10.1007/s12311-010-0155-z
- 27 Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 2009; Dec; 73 (22) 1823-1830 https://doi.org/10.1212/WNL.0b013e3181c33adf
- 28 Ilg W, Brötz D, Burkard S, Giese MA, Schöls L, Synofzik M. Long-term effects of coordinative training in degenerative cerebellar ataxia. Mov Disord 2010; Oct; 25 (13) 2239-2246 https://doi.org/10.1002/mds.23222
- 29 Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O. et al. Spinocerebellar ataxias in Brazil - frequencies and modulating effects of related genes. Cerebellum 2014; Feb; 13 (01) 17-28 https://doi.org/10.1007/s12311-013-0510-y
- 30 Teive HAG, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC. et al. Spinocerebellar ataxias - genotype-phenotype correlations in 104 Brazilian families. Clinics 2012; 67 (05) 443-449 https://doi.org/10.6061/clinics/2012(05)07
- 31 Pulido-Valdeolivas I, Gómez-Andrés D, Sanz-Gallego I, Rausell E, Arpa J. Patterns of motor signs in spinocerebellar ataxia type 3 at the start of follow-up in a reference center. Cerebellum Ataxias 2016; Feb; 3: 4-4 https://doi.org/10.1186/s40673-016-0042-6