Subscribe to RSS

DOI: 10.1590/0004-282X-anp-2020-0094
Blood-cerebrospinal fluid (CSF) barrier dysfunction means reduced CSF flow not barrier leakage - conclusions from CSF protein data
Disfunção da barreira hemato-liquórica significa redução do fluxo de líquido cefalorraquidiano, e não quebra de barreira - conclusões a partir de estudos sobre as proteínas do LCR
ABSTRACT
Background: Increased concentrations of serum proteins in cerebrospinal fluid (CSF) are interpreted as blood-CSF barrier dysfunction. Frequently used interpretations such as barrier leakage, disruption or breakdown contradict CSF protein data, which suggest a reduced CSF flow rate as the cause. Results: Even the severest barrier dysfunctions do not change the molecular size-dependent selectivity or the interindividual variation of the protein transfer across barriers. Serum protein concentrations in lumbar CSF increase with hyperbolic functions, but the levels of proteins that do not pass the barrier remain constant (brain proteins) or increase linearly (leptomeningal proteins). All CSF protein dynamics above and below a lumbar blockade can also be explained, independent of their barrier passage, by a reduced caudally directed flow. Local accumulation of gadolinium in multiple sclerosis (MS) is now understood as due to reduced bulk flow elimination by interstitial fluid (ISF). Nonlinear change of the steady state in barrier dysfunction and along normal rostro-caudal gradients supports the diffusion/flow model and contradicts obstructions of diffusion pathways. Regardless of the cause of the disease, pathophysiological flow blockages are found in bacterial meningitis, leukemia, meningeal carcinomatosis, Guillain-Barré syndrome, MS and experimental allergic encephalomyelitis. In humans, the fortyfold higher albumin concentrations in early fetal development decrease later with maturation of the arachnoid villi, i.e., with beginning CSF outflow, which contradicts a relevant outflow to the lymphatic system. Respiration- and heartbeat-dependent oscillations do not disturb net direction of CSF flow. Conclusion: Blood-CSF and blood-brain barrier dysfunctions are an expression of reduced CSF or ISF flow rate.
RESUMO
Introdução: Concentrações aumentadas de proteínas séricas no líquido cefalorraquidiano são interpretadas como disfunção da barreira (hemato-liquórica) sanguínea do LCR. Interpretações frequentemente usadas, como vazamento de barreira (quebra ou rompimento de barreira), rompimento ou quebra, contradiz os dados de proteína do LCR, que sugerem uma taxa de fluxo reduzida do LCR como a causa. Resultados: Mesmo as disfunções de barreira mais graves não alteram a seletividade dependente do tamanho molecular nem a variação interindividual da transferência de proteína através de barreiras. As concentrações de proteínas séricas no LCR lombar aumentam com as funções hiperbólicas, mas as proteínas que não passam a barreira permanecem constantes (proteínas do cérebro) ou aumentam linearmente (proteínas leptomeningeais). Toda a dinâmica das proteínas do LCR acima e abaixo de um bloqueio lombar também pode ser explicada, independente de sua passagem pela barreira, por um fluxo caudal reduzido. O acúmulo local de gadolínio na esclerose múltipla (EM) é agora entendido como decorrente da redução da eliminação do bulk flow pelo fluido intersticial (FIS). A mudança não linear do estado estacionário na disfunção da barreira e ao longo dos gradientes rostro-caudais normais apoia o modelo de difusão/fluxo e contradiz as obstruções das vias de difusão. Independentemente da causa da doença, os bloqueios fisiopatológicos do fluxo são encontrados na meningite bacteriana, leucemia, carcinomatose meníngea, síndrome de Guillain-Barré, EM e encefalomielite alérgica experimental. Em humanos, as concentrações de albumina quarenta vezes mais altas no desenvolvimento fetal inicial diminuem tarde com a maturação das vilosidades aracnoides, isto é, com o início do fluxo de LCR, o que contradiz um fluxo relevante para o sistema linfático. As oscilações dependentes da respiração e do batimento cardíaco não perturbam a direção do fluxo do LCR. Conclusão: As disfunções das barreiras hemato-liquórica e hemato-encefálica são uma expressão da redução da taxa de fluxo do LCR ou FIS.
Keywords:
Blood-brain Barrier - Barrier Dysfunction - Cerebrospinal Fluid Flow - Cerebrospinal Fluid Proteins - Neurological DisorderPalavras-chave:
Barreira Hematoencefálica - Disfunção da Barreira - Fluxo de LCR - Proteínas do Líquido Cefalorraquidiano - Doenças do Sistema NervosoPublication History
Received: 26 March 2020
Accepted: 20 May 2020
Article published online:
01 June 2023
© 2021. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Reiber H. Cerebrospinal fluid data compilation and knowledge-based interpretation of bacterial, viral, parasitic, oncological, chronic inflammatory and demyelinating diseases: Diagnostic patterns not to be missed in Neurology and Psychiatry. Arq Neuro-Psiquiatr. 2016 Apr;74(4):337-50. http://dx.doi.org/10.1590/0004-282X20160044
- 2 Reiber H, Peter JB. Cerebrospinal fluid analysis - disease-related data patterns and evaluation programs. J Neurol Sci. 2001 Mar;184(2):101-22. http://doi.org/10.1016/s0022-510x(00)00501-3
- 3 Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. CRC: Boca Raton; 1996.
- 4 Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010 Jan;37(1):13-25. http://doi.org/10.1016/j.nbd.2009.07.030
- 5 Bradbury M. The concept of a Blood-Brain-Barrier. Chichester: John Wiley &Sons; 1979.
- 6 Reiber H. Dynamics of brain proteins in cerebrospinal fluid. Clin Chim Acta. 2001 Aug;310(2):173-86. https://doi.org/10.1016/s0009-8981(01)00573-3
- 7 Reiber H. Proteins in cerebrospinal fluid and blood: Barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci. 2003;21(3-4):79-96.
- 8 Reiber H. Flow rate of cerebrospinal fluid (CSF) - a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci. 1994 Apr;122(2):189-203. https://doi.org/10.1016/0022-510x(94)90298-4
- 9 Renkin EM. Transport of large molecules across capillary walls. Physiologist. 1964 Feb;60:13-28.
- 10 Tourtellotte WW. On cerebrospinal fluid immunoglobulin-G (IgG) quotients in multiple sclerosis and other diseases. A review and a new formula to estimate the amount of IgG synthesized per day by the central nervous system. J Neurol Sci. 1970 Mar;10(3):279-304. https://doi.org/10.1016/0022-510x(70)90156-5
- 11 Rapoport SI. Passage of proteins from blood to cerebrospinal fluid. In: Wood JH, editor. Neurobiology of Cerebrospinal Fluid. New York: Plenum Press; 1983. p.233-45.
- 12 Livrea P, Trojano M, Simone IL, Zimatore GB, Pisicchio L, Logroscino G, et al. Heterogeneous models for blood CSF Barrier permeability to serum proteins in normal and abnormal CSF /serum protein concentration gradients. J Neurol Sci. 1984 Jun;64(3):245-58. https://doi.org/10.1016/0022-510X(84)90173-4
- 13 Auer M, Hegen H, Zeileis A, Deisenhammer F. Quantitation of intrathecal immunoglobulin synthesis - a new empirical formula. Eur J Neurol. 2016 Apr;23(4):713-21. https://doi.org/10.1111/ene.12924
- 14 Asgari M, deZelicourt DA, Kurtcuoglu V. Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase. Fluids Barriers CNS. 2017 May;14:14. https://doi.org/10.1186/s12987-017-0063-4
- 15 Reiber H. Knowledge-base for interpretation of Cerebrospinal fluid data patterns - Essentials in Neurology and Psychiatry. Arq Neuro-Psiquiatr. 2016 Jun;74(6):501-12. https://doi.org/10.1590/0004-282X20160066
- 16 Davson H. Physiology of the ocular and cerebrospinal fluids. London: Churchill; 1956.
- 17 Møllgård K, Saunders NR. The development of the human blood-brain and Blood-CSF barriers. Neuropathol Appl Neurobiol. 1986 Jul-Aug;12(4):337-58. https://doi.org/10.1111/j.1365-2990.1986.tb00146.x
- 18 Weller RO. Microscopic morphology and histology of the human meninges. Morphologie. 2005 Mar;89(284):22-34. https://doi.org/10.1016/s1286-0115(05)83235-7
- 19 Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol. 2002 Jun;38(6):323-37. https://doi.org/10.1016/s1537-1891(02)00200-8
- 20 Wolburg H, Paulus W. Choroid plexus: biology and pathology. Acta Neuropathol. 2010 Jan;119(1):75-88. https://doi.org/10.1007/s00401-009-0627-8
- 21 Reiber H. Non-linear ventriculo-lumbar protein gradients validate the diffusion-flow model for the blood-CSF barrier. Clin Chim Acta. 2021 Feb; 513: 64-67. https://doi.org/10.1016/j.cca.2020.12.002
- 22 Benveniste H, Hof PR, Nedergaard M, Bechter K. Modern Cerebrospinal fluid flow research and Heinrich Quincke’s Seminal 1872 Paper on the distribution of Cinnabar in freely moving animals. J Comp Neurol. 2015 Aug;523(12):1748-55. https://doi.org/10.1002/cne.23758
- 23 Reiber H, Ruff M, Uhr M. Ascorbate Concentration in Human Cerebrospinal Fluid (CSF) and Serum. Intrathecal Accumulation and CSF flow rate. Clin Chim Acta. 1993 Aug;217(2):163-73. https://doi.org/10.1016/0009-8981(93)90162-w
- 24 Kruse T, Reiber H and Neuhoff V. Amino acid transport across the human blood-CSF barrier. An evaluation graph for amino acid concentrations in cerebrospinal fluid. J Neurol Sci. 1985 Sep;70(2):129-38. https://doi.org/10.1016/0022-510x(85)90082-6
- 25 Reiber H, Zeman D, Kušnierová P, Mundwiler E, Bernasconi L. Diagnostic relevance of free light chains in cerebrospinal fluid - the hyperbolic reference range for reliable data interpretation in quotient diagrams. Clin Chim Acta. 2019 Oct;497:153-62. https://doi.org/10.1016/j.cca.2019.07.027
- 26 Puy V, Zmudka-Attier J, Capel C, Bouzerar R, Serot J-M, Bourgeoiset A-M, et al. Interactions between flow oscillations and biochemical parameters in the cerebrospinal fluid. Front Aging Neurosci. 2016 Jun;8:154. https://doi.org/10.3389/fnagi.2016.00154
- 27 Middlebrooks EH, Bennet JA, Crow AO. Relation between tag position and degree of visualized cerebrospinal fluid reflux into the lateral ventricles in time-spatial labeling inversion pulse magnetic resonance imaging at the foramen of Monro. Fluids Barriers CNS. 2015 Jun;12:14. https://doi.org/10.1186/s12987-015-0011-0
- 28 Reubelt D, Small LC, Hoffmann MH, Kapapa T, Schmitz BL. MR imaging and quantification of the movement of the lamina terminalis depending on the CSF dynamics. AJNR Am J Neuroradiol. 2009 Jan;30(1):199-202. https://doi.org/10.3174/ajnr.A1306
- 29 Dreha-Kulaczewski S, Joseph AA, Merboldt KD, Ludwig HC, Gärtner J, Frahm J. Inspiration Is the Major Regulator of Human CSF Flow. J Neurosci. 2015 Feb;35(6):2485-91. https://doi.org/10.1523/JNEUROSCI.3246-14.2015
- 30 Lindstrøm EK, Ringstad G, Mardal KA, Eide PK. Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus. Neuroimage Clin. 2018;20:731-41. https://doi.org/10.1016/j.nicl.2018.09.006
- 31 Wevers NR, Kasi DG, Gray T, Wilschut KJ, Smith B, van Vught R, et al. A perfused human blood-brain barrier on a chip for high throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018 Aug;15(1):23. https://doi.org/10.1186/s12987-018-0108-3
- 32 Koh l, Zakharov A, Johnston M. Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2005 Sep;2:6. https://doi.org/10.1186/1743-8454-2-6
- 33 Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009 Jan;117(1):1-14. https://doi.org/10.1007/s00401-008-0457-0
- 34 Edsbagge M, Tisell M, Jacobsson L, Wikkelso C. Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol. 2004 Dec;287(6):R1450-5. https://doi.org/10.1152/ajpregu.00215.2004
- 35 Metzger F, Mischek D and Stoffers F. The connected steady state model and the interdependence of the CSF proteome and CSF flow characteristics. Front Neurosci. 2017 May;11:241. https://doi.org/10.3389/fnins.2017.00241
- 36 Abbott NJ. Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology. Neurochem Int. 2004 Sep;45(4):545-52. https://doi.org/10.1016/j.neuint.2003.11.006
- 37 Agnati LF, Marcoli M, Leo G, Maura G, Guidolin D. Homeostasis and the concept of ‘interstitial fluids hierarchy’: Relevance of cerebrospinal fluid sodium concentrations and brain temperature control. Int J Mol Med. 2017 Mar;39(3):487-97. https://doi.org/10.3892/ijmm.2017.2874
- 38 Ray L, Iliff JJ, Heys JJ. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS. 2019 Mar;16(1):6. https://doi.org/10.1186/s12987-019-0126-9
- 39 Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014 Dec;11:26. https://doi.org/10.1186/2045-8118-11-26
- 40 Thompson EJ. The CSF proteins: a biochemical approach. 2. ed. Amsterdam: Elsevier; 2005.
- 41 Cutler RW, Murray JE, Cornick LR. Variations in protein permeability in different regions of the cerebrospinal fluid. Exp Neurol. 1970 Aug;28(2):257-65. https://doi.org/10.1016/0014-4886(70)90234-7
- 42 Weisner B, Bernhardt W. Protein fractions of lumbar, cisternal and ventricular cerebrospinal fluid J Neurol Sci. 1978 Jul;37(3):205-14. https://doi.org/10.1016/0022-510x(78)90204-6
- 43 Seyfert S, Faulstich A. Is the blood-CSF barrier altered in disease? Acta Neurol Scand. 2003 Oct;108(4):252-6. https://doi.org/10.1034/j.1600-0404.2003.00119
- 44 Reiber H, Padilla-Docal B, Jensenius J, Dorta-Contreras AJ. Mannan-binding lectin in CSF - a leptomeningeal protein. Fluids Barriers CNS. 2012 Aug;9:17. https://doi.org/10.1186/2045-8118-9-17
- 45 Schipper HI, Bardosi A, Jacobi C, Felgenhauer K. Meningeal carcinomatosis. Origin of local IgG production in the CSF. Neurology. 1988 Mar;38(3):413-6. https://doi.org/10.1212/wnl.38.3.413
- 46 Price RA, Johnson WW. The central nervous system in childhood leukemia. I. The arachnoid. Cancer. 1973 Mar;31(3):520-33. https://doi.org/10.1002/1097-0142(197303)31:3<520::aid-cncr2820310306>3.0.co;2-2
- 47 Liebsch R, Kornhuber ME, Dietl D, Gräfin von Einsiedel H, Conrad B. Blood-CSF barrier integrity in multiple sclerosis. Acta Neurol Scand. 1996 Dec;94(6):404-10. https://doi.org/10.1111/j.1600-0404.1996.tb00052.x
- 48 Suckling AJ, Reiber H, Kirby JA, Rumsby MG: Chronic relapsing experimental allergic encephalomyelitis: immunological and blood-cerebrospinal fluid barrier-dependent changes in the cerebrospinal fluid. J Neuroimmunol. 1983 Feb;4(1):35-45. https://doi.org/10.1016/0165-5728(83)90062-0
- 49 Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist. 2009 Apr;15(2):180-93. https://doi.org/10.1177/1073858408329509
- 50 May C, Kays SA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990 Mar;40(3 Pt 1):500-3. https://doi.org/10.1212/wnl.40.3_part_1.500
- 51 Lei Y, Han H, Yuan F, Javeed A, Zhao Y. The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol. 2017 Oct;157:230-46. https://doi.org/10.1016/j.pneurobio.2015.12.007
- 52 Catala M. Carbonic anhydrase activity during development of the choroid plexus in the human fetus. Child Nerv Syst. 1997 Aug;13:364-8. https://doi.org/10.1007/s003810050101
- 53 Bell JE, Fryer AA, Collins M, Marshall T, Jones PW, Strange R, et al. Developmental profile of plasma proteins in human fetal cerebrospinal fluid and blood. Neuropathol Appl Neurobiol. 1991 Dec;17(6):441-56. https://doi.org/10.1111/j.1365-2990.1991.tb00748.x
- 54 Spina-Franca A, Amar I. Proteinorraquia total: variações relacionadas ao sexo e a idade. Arch Neuro-Psiqiatr. 1963 Mar;21(1):13-8. http://dx.doi.org/10.1590/S0004-282X1963000100003
- 55 Statz A, Felgenhauer K. Development of the blood-CSF barrier. Dev Med Child Neurol. 1983 Apr;25(2):152-61. https://doi.org/10.1111/j.1469-8749.1983.tb13738.x
- 56 Weller RO, Kida S, Zhang T. Pathways of fluid drainage from the brain. Morphological aspects and immunological significance in rat and man. Brain Pathol. 1992 Oct;2(4):277-84. https://doi.org/10.1111/j.1750-3639.1992.tb00704.x
- 57 Cserr HE, Knopf PM. Cervical lymphatics, the blood brain barrier and the immunoreactivity of the brain: a new view. Immunol Today. 1992 Dec;13(12):507-12. https://doi.org/10.1016/0167-5699(92)90027-5
- 58 Spina-França A, Cavallo T, Aluizio de B, Machado A, Gama da Rocha A, Naide Galhardo N. The cerebrospinal fluid in the post-mortem. Arq Neuro-Psiquiatr. 1969 Dec;27(4):294-307. http://dx.doi.org/10.1590/S0004-282X1969000400006
- 59 Egnor M, Rosiello A, Zheng L. A model of intracranial pulsations. Pediatr Neurosurg. 2001 Dec;35(6):284-98. https://doi.org/10.1159/000050440
- 60 Galea I, Perry VH. The blood-brain interface: a culture change. Brain Behav Immun. 2018 Feb;68:11-16. https://doi.org/10.1016/j.bbi.2017.10.014