RSS-Feed abonnieren

DOI: 10.1590/0004-282X20190152
Free carnitine and branched chain amino acids are not good biomarkers in Huntington’s disease
Carnitina livre e aminoácidos de cadeia ramificada não são bons biomarcadores na doença de Huntington
ABSTRACT
Background: Huntington’s disease (HD), caused by an expanded CAG repeat at HTT, has no treatment, and biomarkers are needed for future clinical trials. Objective: The objective of this study was to verify if free carnitine and branched chain amino acids levels behave as potential biomarkers in HD. Methods: Symptomatic and asymptomatic HD carriers and controls were recruited. Age, sex, body mass index (BMI), age of onset, disease duration, UHDRS scores, and expanded CAG tract were obtained; valine, leucine, isoleucine, and free carnitine were measured. Baseline and longitudinal analysis were performed. Results: Seventy-four symptomatic carriers, 20 asymptomatic carriers, and 22 non-carriers were included. At baseline, valine levels were reduced in symptomatic and asymptomatic HD carriers when compared to non-carriers. No difference in free carnitine or isoleucine+leucine levels were observed between groups. BMI of symptomatic individuals was lower than those of non-carriers. Valine levels correlated with BMI. Follow-up evaluation was performed in 43 symptomatic individuals. UHDRS total motor score increased 4.8 points/year on average. No significant reductions in BMI or valine were observed, whereas free carnitine and isoleucine+leucine levels increased. Conclusions: Although valine levels were lower in HD carriers and were related to BMI losses observed in pre-symptomatic individuals, none of these metabolites seem to be biomarkers for HD.
RESUMO
Introdução: A doença de Huntington (DH), causada por uma repetição CAG expandida no HTT, não possui tratamento e biomarcadores são necessários para futuros ensaios clínicos. Objetivo: Nosso objetivo foi verificar se os níveis de carnitina livre e aminoácidos de cadeia ramificada se comportam como potenciais biomarcadores na DH. Métodos: Portadores sintomáticos e assintomáticos e controles foram recrutados. Idade, sexo, índice de massa corporal (IMC), idade de início, duração da doença, escores UHDRS e trato CAG expandido foram obtidos; valina, leucina, isoleucina e carnitina livre foram medidas. Foram realizadas análises basal e longitudinal. Resultados: Setenta e quatro portadores sintomáticos, 20 portadores assintomáticos e 22 não portadores foram incluídos. No início do estudo, os níveis de valina estavam reduzidos em portadores de DH sintomáticos e assintomáticos quando comparados aos não portadores. Não foram observadas diferenças nos níveis de carnitina livre ou isoleucina + leucina entre os grupos. O IMC dos indivíduos sintomáticos foi menor que o dos não portadores. Níveis de valina correlacionaram-se com o IMC. Avaliação de acompanhamento foi realizada em 43 indivíduos sintomáticos. A pontuação do escore motor total da UHDRS aumentou 4,8 pontos/ano em média. Não foram observadas reduções significativas no IMC ou na valina, enquanto os níveis de carnitina livre e isoleucina+leucina aumentaram. Conclusões: Embora os níveis de valina tenham sido menores nos portadores de DH e estivessem relacionados às perdas de IMC observadas em indivíduos pré-sintomáticos, nenhum desses metabólitos parece ser biomarcador para a DH.
Palavras-chave:
Biomarcadores - Aminoácidos de Cadeia Ramificada - Carnitina - Doença de Huntington - Perda de PesoPublikationsverlauf
Eingereicht: 28. August 2019
Angenommen: 17. September 2019
Artikel online veröffentlicht:
13. Juni 2023
© 2020. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, et al. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993 Mar;72(6):971-83. https://doi.org/10.1016/0092-8674(93)90585-e
- 2 Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet. 2005 Oct;14(19):2871-80. https://doi.org/10.1093/hmg/ddi319
- 3 Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem. 2009 Jun;284(34):22840-52. https://doi.org/10.1074/jbc.M109.032888
- 4 Turner C, Schapira AH. Mitochondrial matters of the brain: the role in Huntington’s disease. J Bioenerg Biomembr. 2010 Jun;42(3):193-8. https://doi.org/10.1007/s10863-010-9290-y
- 5 Cuturic M, Abramson RK, Moran RR, Hardin JW, Frank EM, Sellers AA. Serum carnitine levels and levocarnitine supplementation in institutionalized Huntington’s disease patients. Neurol Sci. 2013 Jan;34(1):93-8. https://doi.org/10.1007/s10072-012-0952-x
- 6 Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006 Jan;136(1 Suppl):207S-211S. https://doi.org/10.1093/jn/136.1.207S
- 7 Underwood BR, Broadhurst D, Dunn WB, Ellis DI, Michell AW, Vacher C, et al. Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain. 2006 Apr;129(Pt 4):877-86. https://doi.org/10.1093/brain/awl027
- 8 Mochel F, Charles P, Seguin F, Barritault J, Coussieu C, Perin L, et al. Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression. PLoS One. 2007 Jul;2(7):e647. https://doi.org/10.1371/journal.pone.0000647
- 9 Mochel F, Benaich S, Rabier D, Durr A. Validation of plasma branched chain amino acids as biomarkers in Huntington disease. Arch Neurol. 2011 Feb;68(2):265-7. https://doi.org/10.1001/archneurol.2010.358
- 10 Castilhos RM, Souza AF, Furtado GV, Gheno TC, Silva AL, Vargas FR, et al. Huntington disease and Huntington disease-like in a case series from Brazil. Clin Genet. 2014 Oct;86(4):373-7. https://doi.org/10.1111/cge.12283
- 11 Mastrokolias A, Pool R, Mina E, Hettne KM, van Duijn E, van der Mast RC, et al. Integration of targeted metabolomics and transcriptomics identifies deregulation of phosphatidylcholine metabolism in Huntington’s disease peripheral blood samples. Metabolomics. 2016 Aug;12:137. https://doi.org/10.1007/s11306-016-1084-8
- 12 Virmani A, Pinto L, Bauermann O, Zerelli S, Diedenhofen A, Binienda ZK, et al. The Carnitine Palmitoyl Transferase (CPT) system and possible relevance for neuropsychiatric and neurological conditions. Mol Neurobiol. 2015 Oct;52(2):826-36. https://doi.org/10.1007/s12035-015-9238-7
- 13 Dorsey ER, Beck CA, Darwin K, Nichols P, Brocht AF, Biglan KM, et al. Natural history of Huntington disease. JAMA Neurol. 2013 Dec;70(12):1520-30.
- 14 Ottosson F, Ericson U, Almgren P, Nilsson J, Magnusson M, Fernandez C, et al. Postprandial levels of branch chained and aromatic amino acids associate with fasting glycaemia. J Amino Acids. 2016;8576730:1-9. https://doi.org/10.1155/2016/8576730
- 15 Castilhos RM, dos Santos JA, Augustin MC, Pedroso JL, Barsottini O, Saba R, et al. Minimal Prevalence of Huntington’s disease in South Brazil and instability of the expanded CAG tract during intergenerational transmissions. Genet Mol Biol. 2019 Apr-Jun;42(2):329-36. https://doi.org/10.1590/1678-4685-GMB-2018-003