Nuklearmedizin 2010; 49(05): 187-194
DOI: 10.3413/Nukmed-0311-10-04
Original article
Schattauer GmbH

Parathyroid scintigraphy protocols in Finland in 2010

Results of the query and current statusParathyreoidale Szintigraphieprotokolle in Finnland im Jahr 2010Ergebnisse einer Umfrage und aktueller Stand
V. Tunninen
1   The Department of Nuclear Medicine, Satakunta Central Hospital, Pori, Finland
,
T. Kauppinen
2   HUS Helsinki Medical Imaging Centre, Helsinki University Hospital, Finland
,
H. Eskola
3   The Department of Biomedical Engineering, Tampere University of Technology, Finland
,
M.O. Koskinen
4   Medical Imaging Centre, Tampere University Hospital, Finland
› Author Affiliations
Further Information

Publication History

received: 28 April 2010

accepted in revised form: 23 July 2010

Publication Date:
24 January 2018 (online)

Summary

The goal of this study was to describe current clinical parathyroid scintigraphy (PS) protocols in Finland. Methods: All departments of nuclear medicine in Finland were contacted, and instructions regarding PS were requested. Results: Instructions regarding PS were received from all of the departments that perform PS (n = 19). Seven hundred and sixtynine PS studies were performed in 2009 (between 7 and 209 per hospital). Three methods of PS were used. The dual-phase method with 99mTc-sestamibi is used in seven hospitals, the dual-tracer method with 123I/99mTc-sestamibi in eleven, and 99mTcO4/99mTc-sestamibi in one hospital. The activities of 99mTc-sestamibi, 123I and 99mTcO4 were 150–800 MBq, 10–30 MBq and 50 MBq, respectively. The anterior image with parallel-hole collimators, the anterior image with pinhole collimator, the oblique angles with pinhole collimator, SPECT and hybrid CT with SPECT were acquired in 84%, 26%, 16%, 63%, and 42% of the hospitals, respectively. Because the imaging techniques were combined, one to four acquisitions were performed per patient. Scatter and attenuation correction were used in five protocols. A correction for crosstalk of 123I and 99mTc gamma energies was not used, but the amount of crosstalk was decreased by using narrow or asymmetric energy windows in all dual isotope protocols. Conclusion: 19 hospitals used 18 different study protocols. Thus, significant variability exists in the current practice of PS in Finland. The protocols should be tested with known phantoms to determine any differences in sensitivities for detecting small active structures. Further studies with phantoms are needed to determine the optimal imaging techniques. The results of these phantom studies will provide guidelines for proposing national recommendations for PS.

Zusammenfassung

Das Ziel dieser Studie war die Beschreibung aktueller klinischer Protokolle für die Nebenschilddrüsen (NSD)-Szintigraphie in Finnland. Methoden: Alle nuklearmedizinischen Abteilungen in Finnland wurden angeschrieben und um die Vorschriften für die NSD-Szintigraphie gebeten. Ergebnisse: Wir erhielten die Vorschriften aller Abteilungen, die NSD-Szintigraphien durchführen (n = 19). Im Jahr 2009 erfolgten 769 szintigraphische NSD-Untersuchungen (7 bis 209 je Krankenhaus). Drei Methoden wurden für die NSD-Szintigraphie verwendet. Die Dual-Phasen-Methode mit 99mTc-Sestamibi wird in sieben Krankenhäusern eingesetzt, die Doppelnuklid-Methode mit 123I/99mTc-Sestamibi in elf und mit 99mTcO4/99mTc-Sestamibi wird in einer Klinik gearbeitet. Die Aktivitäten von 99mTc-Sestamibi, 123I bzw. 99mTcO4 betrugen 150–800 MBq, 10–30 MBq und 50 MBq. Aufnahmen von vorne mit Parallelloch-Kollimatoren oder mit dem Pinhole-Kollimator, Schrägaufnahmen mit dem Pinhole-Kollimator, Aufnahmen mit SPECT und CT/SPECT-Hybridscanner wurden in 84%, 26%, 16%, 63% bzw. 42% der Kliniken akquiriert. Da die Methoden kombiniert wurden, erfolgten je Patient ein bis vier Datenakquisitionen. In fünf Protokollen wurde nach Streuung und Abschwächung korrigiert. Eine Korrektur der Überlagerung von 123I- und 99mTc-Gammastrahlungen fand nicht statt, jedoch wurde das Ausmaß der Überlagerungen dadurch reduziert, dass man bei allen Doppelnuklid- Protokollen enge oder asymmetrische Energiefenster verwendete. Schlussfolgerung: In 19 Krankenhäusern kamen 18 verschiedene Studienprotokolle zum Einsatz. In der aktuellen Praxis der NSD-Szintigraphie besteht daher in Finnland eine signifikante Variabilität. Die Protokolle sollten an bekannten Phantomen getestet werden, um alle Sensitivitätsunterschiede bei der Darstellung kleiner aktiver Strukturen aufzudecken. Weitere Studien an Phantomen sind erforderlich, um die optimale Bildtechnik zu definieren. Die Ergebnisse dieser Phantomstudien ermöglichen es, Richtlinien für nationale Empfehlungen für die NSD-Szintigraphie zu erstellen.

 
  • References

  • 1 Ansquer C, Mirallie E, Carlier T. et al. Preoperative localization of parathyroid lesions. Value of 99mTc-MIBI tomography and factors influencing detection. Nuklearmedizin 2008; 47: 158-162.
  • 2 Arveschoug AK, Bertelsen H, Vammen B. Presurgi- cal localization of abnormal parathyroid glands using a single injection of 99mTc-sestamibi: comparison of high-resolution parallel-hole and pinhole collimators, and interobserver and intraob- server variation. Clin Nucl Med 2002; 27: 249-254.
  • 3 Bilezikian JP, Potts Jr JT, Fuleihan Gel H. et al. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J Clin Endocrinol Metab 2002; 87: 5353-5361.
  • 4 Brownless SM, Gimlette TM. Comparison of techniques for thallium-201-technetium-99m parathyroid imaging. Br J Radiol 1989; 62: 532-535.
  • 5 Buck AK, Nekolla S, Ziegler S. et al. SPECT/CT. J Nucl Med 2008; 49: 1305-1319.
  • 6 Carlier T, Oudoux A, Mirallie E. et al. 99mTc-MIBI pinhole SPECT in primary hyperparathyroidism: comparison with conventional SPECT, planar scintigraphy and ultrasonography. Eur J Nucl Med Mol Imaging 2008; 35: 637-643.
  • 7 Chen CC, Holder LE, Scovill WA. et al. Comparison of parathyroid imaging with technetium-99m-per- technetate/sestamibi subtraction, double-phase technetium-99m-sestamibi and technetium- 99m-sestamibi SPECT. J Nucl Med 1997; 38: 834-839.
  • 8 Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Saunders: 2003
  • 9 Coakley AJ, Kettle AG, Wells CP. et al. 99mTc sestami- bi - a new agent for parathyroid imaging. Nucl Med Commun 1989; 10: 791-794.
  • 10 Dontu VS, Kettle AG, O'Doherty MJ, Coakley AJ. Optimization of parathyroid imaging by simultaneous dual energy planar and single photon emission tomography. Nucl Med Commun 2004; 25: 1089-1093.
  • 11 Even-Sapir E, Keidar Z, Sachs J. et al. The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med 2001; 42: 998-1004.
  • 12 Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med 1996; 37: 1832-1836.
  • 13 Fujii H, Iwasaki R, Ogawa K. et al. Evaluation of parathyroid imaging methods with 99mTc-MIBI-- the comparison of planar images obtained using a pinhole collimator and a parallel-hole collimator. Kaku Igaku 1999; 36: 425-433.
  • 14 Gayed IW, Kim EE, Broussard WF. et al. The value of 99mTc-sestamibi SPECT/CT over conventional SPECT in the evaluation of parathyroid adenomas or hyperplasia. J Nucl Med 2005; 46: 248-252.
  • 15 Gimlette TM, Brownless SM, Taylor WH. et al. Limits to parathyroid imaging with thallium-201 confirmed by tissue uptake and phantom studies. J Nucl Med 1986; 27: 1262-1265.
  • 16 Heikkinen JO, Kuikka JT, Ahonen AK, Rautio PJ. Quality of dynamic radionuclide renal imaging: multicentre evaluation using a functional renal phantom. Nucl Med Commun 2001; 22: 987-995.
  • 17 Hindie E, Melliere D, Jeanguillaume C. et al. Parathyroid imaging using simultaneous doublewindow recording of technetium-99m-sestamibi and iodine-123. J Nucl Med 1998; 39: 1100-1105.
  • 18 Hindie E, Ugur O, Fuster D. et al. 2009 EANM parathyroid guidelines. Eur J Nucl Med Mol Imaging 2009; 36: 1201-1216.
  • 19 Ho Shon IA, Yan W, Roach PJ. et al. Comparison of pinhole and SPECT 99mTc-MIBI imaging in primary hyperparathyroidism. Nucl Med Commun 2008; 29: 949-955.
  • 20 Inoue Y, Shirouzu I, Machida T. et al. Physical characteristics of low and medium energy collimators for 123I imaging and simultaneous dual-isotope imaging. Nucl Med Commun 2003; 24: 1195-1202.
  • 21 Ivanovic M, Weber DA, Loncaric S, Franceschi D. Feasibility of dual radionuclide brain imaging with I-123 and Tc-99m. Med Phys 1994; 21: 667-674.
  • 22 Krausz Y, Bettman L, Guralnik L. et al. Technetium- 99m-MIBI SPECT/CT in primary hyperparathy- roidism. World J Surg 2006; 30: 76-83.
  • 23 Lavely WC, Goetze S, Friedman KP. et al. Comparison of SPECT/CT, SPECT, and planar imaging with single- and dual-phase 99mTc-sestamibi parathyroid scintigraphy. J Nucl Med 2007; 48: 1084-1089.
  • 24 Levine DS, Belzberg AS, Wiseman SM. Hybrid SPECT/CT imaging for primary hyperparathyroidism: case reports and pictorial review. Clin Nucl Med 2009; 34: 779-784.
  • 25 Lorberboym M, Minski I, Macadziob S. et al. Incremental diagnostic value of preoperative 99mTc- MIBI SPECT in patients with a parathyroid adenoma. J Nucl Med 2003; 44: 904-908.
  • 26 Mihai R, Simon D, Hellman P. Imaging for primary hyperparathyroidism--an evidence-based analysis. Langenbecks Arch Surg 2009; 394: 765-784.
  • 27 Moka D, Voth E, Dietlein M. et al. Technetium 99m-MIBI-SPECT: A highly sensitive diagnostic tool for localization of parathyroid adenomas. Surgery 2000; 128: 29-35.
  • 28 Nichols KJ, Tronco GG, Tomas MB. et al. Phantom experiments to improve parathyroid lesion detection. Med Phys 2007; 34: 4792-4797.
  • 29 O'Doherty MJ, Kettle AG, Wells P. et al. Parathyroid imaging with technetium-99m-sestamibi: preoperative localization and tissue uptake studies. J Nucl Med 1992; 33: 313-318.
  • 30 O'Doherty MJ, Kettle AG. Parathyroid imaging: preoperative localization. Nucl Med Commun 2003; 24: 125-131.
  • 31 Papathanassiou D, Flament JB, Pochart JM. et al. SPECT/CT in localization of parathyroid adenoma or hyperplasia in patients with previous neck surgery. Clin Nucl Med 2008; 33: 394-397.
  • 32 Prommegger R, Wimmer G, Profanter C. et al. Virtual neck exploration: a new method for localizing abnormal parathyroid glands. Ann Surg 2009; 250: 761-765.
  • 33 Ruf J, Seehofer D, Denecke T. et al. Impact of image fusion and attenuation correction by SPECT-CT on the scintigraphic detection of parathyroid adenomas. Nuklearmedizin 2007; 46: 15-21.
  • 34 Schmidt M, Thoma N, Dietlein M. et al. 99mTc-MIBI SPECT in primary hyperparathyroidism. Influence of concomitant vitamin D deficiency for visualization of parathyroid adenomas. Nuklearmedizin 2008; 47: 1-7.
  • 35 Schommartz B, Cupisti K, Antke C. et al. Localisation of parathyroid glands using planar 99mTc- sestamibi scintigraphy. Comparison between subtraction- and dual-phase technique. Nuklearmedizin 2006; 45: 115-121.
  • 36 Slater A, Gleeson FV. Increased sensitivity and confidence of SPECT over planar imaging in dualphase sestamibi for parathyroid adenoma detection. Clin Nucl Med 2005; 30: 1-3.
  • 37 Taillefer R, Boucher Y, Potvin C, Lambert R. Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium- 99m-sestamibi (double-phase study). J Nucl Med 1992; 33: 1801-1807.
  • 38 Thomas DL, Bartel T, Menda Y. et al. Single photon emission computed tomography (SPECT) should be routinely performed for the detection of parathyroid abnormalities utilizing technetium-99m sestamibi parathyroid scintigraphy. Clin Nucl Med 2009; 34: 651-655.
  • 39 Tomas MB, Pugliese PV, Tronco GG. et al. Pinhole versus parallel-hole collimators for parathyroid imaging: an intraindividual comparison. J Nucl Med Technol 2008; 36: 189-194.
  • 40 Weiss M, Beneke F, Schmid R. et al. Can supplemental imaging with SPECT technique improve the diagnostic value of preoperative Tc-99m-MIBI scintigraphy in primary hyperparathyroidism?. Med Klin (Munich) 2002; 97: 389-395.