Nuklearmedizin 2011; 50(03): 122-133
DOI: 10.3413/Nukmed-0363-10-10
Original article
Schattauer GmbH

A comparison between GATE4 results and MCNP4B published data for internal radiation dosimetry

Ein Vergleich zwischen GATE4-Ergebnissen und publizierten Daten zu MCNP4B für die interne Strahlungsdosimetrie
A. A. Parach
1   Dept. of Medical Physics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
,
H. Rajabi
1   Dept. of Medical Physics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
› Author Affiliations
Further Information

Publication History

received: 27 October 2010

accepted in revised form: 13 January 2011

Publication Date:
28 December 2017 (online)

Summary

Aim: GATE, has been designed as upper layer of the GEANT4 toolkit for nuclear medicine application including internal dosimetry. However, its results have not been fully compared to the well-developed codes and anthropomorphic voxel phantoms have never been used with GATE/GEANT for internal dosimetry. The aim of present study was to compare the internal dose calculated by GATE/GEANT with the MCNP4B published data. Methods: The Zubal phantom was used to model a typical adult male. Activity was assumed uniformly distributed in liver, kidneys, lungs, spleen, pancreas and adrenals. GATE/ GEANT Monte Carlo package was used for estimation of doses in the phantom. Simulations were performed for photon energy of 0.01–1 MeV and mono-energetic electrons of 935 keV. Specific absorbed fractions for photons and S-factors for electrons were calculated. Results: On average, GATE/GEANT produces higher photon SAF (Specific Absorbed Fraction) values (+2.7%) for self-absorption and lower values (-2.9%) for cross-absorption. The difference was higher for paired organs particularly lungs. Moreover the photon SAF values for lungs as source organ at the energy of 200 and 500 keV was considerably higher with MCNP4B compared to GATE. Conclusion: Despite of differences between the GATE4 and MCNP4B, the results can be considered ensuring. This may be considered as validation of GATE/GEANT as a proprietary code in nuclear medicine for radionuclide dosimetry applications.

Zusammenfassung

Ziel: GATE wurde als oberste Schicht des GEANT4- Toolkits für nuklearmedizinische Anwendungen einschließlich interner Dosimetrie entwickelt. Jedoch wurden seine Ergebnisse nicht vollständig mit den ausgereiften Codes verglichen und es wurden noch nie anthropomorphe Voxel-Phantome mit dem GATE/ GEANT zur internen Dosimetrie eingesetzt. In dieser Studie sollte die mit dem GATE/GEANT berechnete interne Dosis mit den für MCNP4P publizierten Daten verglichen werden. Methoden: Das Zubal-Phantom diente als Modell eines typischen männlichen Erwachsenen. Wir nahmen an, dass sich die Aktivität gleichmäßig in Leber, Nieren, Lungen, Milz, Pankreas und Nebennieren verteilt. Zur Dosisschätzung in dem Phantom wurde das GATE/ GEANT- Monte-Carlo-Paket verwendet. Die Simulationen wurden für eine Photonenenergie von 0,01–1 MeV und monoenergetische Elektronen von 935 KeV durchgeführt. Es wurden die spezifischen absorbierten Fraktionen für Protonen und die S-Faktoren für Elektronen berechnet. Ergebnisse: Im Durchschnitt ergibt das GATE/GEANT höhere SAF (spezifische absorbierte Fraktion) Werte (+ 2,7%) für Selbstabsorption und niedrigere Werte (–2,9%) für Kreuzabsorption. Bei paarig angelegten Organen, insbesondere den Lungen, war der Unterschied größer. Darüber hinaus waren die Photonen- SAF-Werte für die Lungen als Ursprungsorgan bei einer Energie von 200 und 500 KeV mit MCNP4B deutlich höher als mit GATE. Schlussfolgerung: Trotz der Unterschiede zwischen GATE4 und MCNP4B halten wir die Ergebnisse für ermutigend. Die Studie kann als Validierung des GATE/GEANTSystems als urheberrechtlich geschützter Code für die Radionuklid-Dosimetrie bei nuklearmedizinischen Anwendungen gelten.

 
  • References

  • 1 Andreo P. Monte Carlo techniques in medical radiation physics. Phys Med Biol 1991; 36: 861-920.
  • 2 Assié K, Gardin I, Véra P, Buvat I. Validation of the Monte Carlo simulator GATE for indium-111 imaging. Phys Med Biol 2005; 50: 3113-3125.
  • 3 Bentourkia M, Sarrhini O. Simultaneous attenuation and scatter corrections in small animal PET imaging. Comput Med Imaging Graph 2009; 33: 477-488.
  • 4 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 2010; 47: 931-936.
  • 5 Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature. J Nucl Med 2009; 50: 477-484.
  • 6 Briesmeister JF. MCNP-A General Monte Carlo N-Particle Transport Code Version 4C. Los Alamos National Laboratory Report. 2000
  • 7 Buvat I, Castiglioni I. Monte Carlo methods in PET and SPECT. Q J Nucl Med 2002; 46: 48-59.
  • 8 Carrier JF, Archambault L, Beaulieu L, Roy R. Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics. Med Phys 2004; 31: 484-492.
  • 9 Chao TC, Xu’ XG. Specific absorbed fractions from the image-based VIP- Man body model and EGS4-VLSI Monte Carlo code: internal electron emitters. Phys Med Biol 2001; 46: 901-927.
  • 10 Charles WS, Schmidtlein CS, Kirov AS. et al. Validation of GATE Monte Carlo simulations of the GE Advance/Discovery LS PET scanners. Med Phys 2006; 33: 198-208.
  • 11 Chiavassa S, Aubineau-Laniece I, Bitar A. et al. Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted dradiotherapy based on the Monte Carlo MCNPX code. Phys Med Biol 2006; 51: 601-616.
  • 12 Chiavassa S, Manuel B, Françoise G-V. et al. OEDIPE: A Personalized Dosimetric Tool Associating Voxel-Based Models with MCNPX. Cancer Biother Radiopharm 2005; 20: 325-332.
  • 13 Damet J, Bochud FO, Bailat C. et al. Variability of radioiodine measurements in the thyroid. Radiat Prot Dosimetry. 2010 doi:10.1093/rpd/ncq312.
  • 14 Flux G, Bardies M, Monsieurs M. et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 2006; 16: 47-59.
  • 15 Geworski L, Schaefer A, Knoop B. et al. Physical aspects of scintigraphy-based dosimetry for nuclear medicine therapy. Nuklearmedizin 2010; 49: 85-95.
  • 16 Glatting G, Landmann M, Wunderlich A. et al. Internal radionuclide therapy: Software for treatment planning using tomographic data. Nuklearmedizin 2006; 45: 269-272.
  • 17 Guimarães CC, Moralles M, Okuno E. Performance of GEANT4 in dosimetry applications: Calculation of X-ray spectra and kerma-to-dose equivalent conversion coefficients. Radiat Meas 2008; 43: 1525-1531.
  • 18 Hakimabad HM, Motavalli LR. Evaluation of specific absorbed fractions from internal photon sources in ORNL analytical adult phantom. Radiat Prot Dosimetry 2008; 128: 427-431.
  • 19 Hindorf C, Ljungberg M, Strand S-E. Evaluation of parameters influencing S values in mouse dosimetry. J Nucl Med 2004; 45: 1960-1965.
  • 20 Hobbs RF, Wahl RL, Lodge MA. et al. 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: Real-time treatment planning and methodologic comparison. J Nucl Med 2009; 50: 1844-1847.
  • 21 Jan S, Santin G, Strul D. et al. GATE:a simulation toolkit for PET and SPECT. Phys Med Biol 2004; 49: 4543-4561.
  • 22 Jiang H, Paganetti H. Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data. Med Phys 2004; 31: 2811-2818.
  • 23 Kawrakow I, Rogers DWO. The EGSnrc Code System: Monte Carlo simulation of electron and photon transport: Ionizing Radiation Standards National Research Council of Canada 2000. Report No. NRCC PIRS-701.
  • 24 Kolbert KS, Sgouros G, Scott AM. et al. Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 1997; 38: 301-308.
  • 25 Kron T, Duggay L, Smithk T. et al. Dose response of various radiation detectors to synchrotron radiation. Phys Med Biol 1998; 43: 3235-3259.
  • 26 Lazaro D, Bitar ZE, Breton V. et al. Fully 3D Monte Carlo reconstruction in SPECT: a feasibility study. Phys Med Biol 2005; 50: 3739-3754.
  • 27 Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations. New York, NY: Society of Nuclear Medicine; 1988
  • 28 Ludovic F, Nicolas C, Abdalkader B. et al. Implementing dosimetry in GATE: Dose-point kernel validation with GEANT4 4.8.1. Cancer Biother Radiopharm 2007; 22: 125-129.
  • 29 MCNPX, Version 2.4.0. Los Alamos National Laboratory: LA-UR-02–5253; 2002.
  • 30 Pacilio M, Lanconelli N, Lo M. et al. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations. Med Phys 2009; 36: 1543-1552.
  • 31 Rodrigues P, Trindade A, Peralta L. et al. Application of GEANT4radiation transport toolkit to dose calculations in anthropomorphic phantoms. Appl Radiat Isot 2004; 61: 1451-1461.
  • 32 Rogers DWO, Mohan R. Questions for comparison of clinical Monte Carlo codes. Schlegel W, Bortfeld T. The Use of Comput Radiother; XIIIth Int'l Conf. Heidelberg: Springer; 2000: 120-122.
  • 33 Santin G, Staelens S, Taschereau R. et al. Evolution of the GATE project: new results and developments. Nucl Phys B (Proc Suppl) 2007; 172: 101-103.
  • 34 Stabin MG, Yoriyaz H. Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys 2002; 82: 21-44.
  • 35 Stabin MG. Uncertainties in internal dose calculations for radiopharmaceuticals. J Nucl Med 2008; 49: 853-860.
  • 36 Staelens S, Strul D, Santin G. et al. Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling. Phys Med Biol 2003; 48: 3021-3042.
  • 37 Steven S, de Wit T, Beekman F. Fast hybrid SPECT simulation including efficient septal penetration modelling (SP-PSF). Phys Med Biol 2007; 52: 3027-3043.
  • 38 Taschereau R, Chatziioannou AF. FDG-PET image-based dose distribution in a realistic mouse phantom from Monte Carlo simulations. IEEE Nucl Sci Symp (Conf Rec). 2005: 23-29 Oct.
  • 39 Visvikis D, Bardies M, Chiavassa S. et al. Use of the GATE Monte Carlo package for dosimetry applications. Nucl Instrum Meth A 2006; 569: 335-340.
  • 40 Yoriyaz H, dos Santos A, Stabin MG, Cabezas R. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code. Med Phys 2000; 27: 1555-1562.
  • 41 Yoriyaz H, Moralles M, Siqueira Pde T. et al. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation. Med Phys 2009; 36: 5198-5213.
  • 42 Zubal I, Harrell CR, Smith EO. et al. Computerized three-dimensional segmented human anatomy. Med Phys 1994; 21: 299-302.