Nuklearmedizin 2015; 54(06): 262-271
DOI: 10.3413/Nukmed-0724-15-02
Original article
Schattauer GmbH

Comparison of FDG and FDG-labeled leukocytes PET/CT in diagnosis of infection

Vergleich von FDG und FDG-markierter Leuko-zyten-PET/CT für die Diagnose von Infektionen
S. Yilmaz
1   Nuclear Medicine, Ankara Atatürk Research and Training Hospital, Ankara, Turkey
,
A. Aliyev
2   Nuclear Medicine, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
,
O. Ekmekcioglu
2   Nuclear Medicine, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
,
M. Ozhan
2   Nuclear Medicine, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
,
L. Uslu
2   Nuclear Medicine, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
,
B. Vatankulu
2   Nuclear Medicine, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
,
S. Sager
2   Nuclear Medicine, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
,
M. Halaç
2   Nuclear Medicine, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
,
K. Sönmezoğlu
2   Nuclear Medicine, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
› Author Affiliations
Further Information

Publication History

received: 10 February 2015

accepted in revised form: 07 October 2015

Publication Date:
31 January 2018 (online)

Summary

The aim of this study is to compare FDG and FDG-labeled leukocyte (WBC) PET/CT in the diagnosis of infection using different SUV and visual thresholds for interpretation. Patients, material, method: 49 consecutive patients (27 men, 22 women, mean age: 55.7 years, range: 16-89 years) with suspected musculoskeletal infection (n = 34), vascular graft infection (n = 5), aortitis (n =1 ), endo - carditis (n = 1), mass lesion which is suspicious for infection or malignity (n = 6), and fever of unknown origin (n = 2) underwent both FDG and WBC-PET/CT. Images were evaluated by both visual analysis (grade 1-3) according to uptake intensity and quantitative grading (grade 1-3) based on lesion to background SUVmax values. Final diagnosis was made by histopathological, microbiological analysis or clinical-radiological work-up. Results: The diagnosis of infection was made in total 24 patients, of whom 14 were diagnosed by histopathological and the rest by clinical-radiological work-up. WBC-PET/CT imaging with the visual threshold of 1b as infection positivity (for truncal lesions uptake equivalent to liver or lumbar vertebrae uptake; for extremity lesions uptake significantly higher than neighbouring soft tissue uptake or higher than neighbouring bone marrow uptake) was found to have the highest diagnostic accuracy (AUC: 0.874, CI: 0.771-0.997, p < 0.001). The optimal SUV threshold was found to be 8.8 (p = 0.006; sensitivity: 72.7%, specificity: 82.8) and 5.3 (p < 0.001; sensitivity: 81.8%, specificity: 79.3%) for FDG and WBC-PET/CT, respectively by ROC curve analysis. Conclusion: WBC-PET/CT is more valuable than FDG PET/CT in the imaging of infection. Visual threshold of >1b seems to be more suitable for detection of infection.

Zusammenfassung

Das Ziel dieser Studie ist FDG-PET/CT und PETCT mit FDG-markierten Leukozyten in der Diagnose von Infektionen mit verschiedenen visuellen und SUV-Schwellen für die Interpretation zu vergleichen. Patienten, Material, Methoden: 49 Patienten (27 Männer, 22 Frauen, durchschnittliches Alter: 55,7 Jahre, Altersspanne: 16–89 Jahre) mit der Verdachtsdiagnose muskuloskelettale Infektion (n = 34), Infektion eines Gefäßtransplantats (n = 5), Aortitis (n = 1), Endokarditis (n =1 ), Raumforderungen verursacht durch Infektion oder malignen Prozess (n = 6) und von Fieber unklarer Genese (n = 2) wurden sowohl eine FDG-PET/ CT als auch eine FDG-markierte Leukozyten- PET/CT-Untersuchung unterzogen. Die Bilder wurden sowohl durch visuelle Analyse (Grad 1–3) nach Aufnahme Intansität als auch quantitative Analyse (Grad 1–3) basierend auf Läsion-zu-Hintergrund-SUVmax-Werten bewertet. Die endgültige Diagnose wurde durch histologische und mikrobiologische Analyse oder klinisch-radiologische Verlaufsbeobachtung gestellt. Ergebnisse: Die Diagnose einer Infektion wurde insgesamt 24 Patienten gestellt. In 14 Patienten geschah dies rein histopathologisch. In den restlichen Patienten wurde die Diagnose durch die klinisch- radiologische Verlaufsbeobachtung gestellt. Die Genauigkeit der FDG-markierte Leukozyten-PET/CT war dann am höchsten, wenn visuell Score >1b (für trunkal Läsionen FDG-Aufnahme entspricht Leber- oder Lendenwirbel- Aufnahme, für Extremitäten-Läsionen FDG-Aufnahme ist höher als die benachbarten Weichgewebe-Aufnahme oder höher als die benachbarten Knochenmark-Aufnahme) als Infektion Positivität ausgewählt wurde (AUC: 0,874, CI: 0,771–0,997, p < 0,001). Die Sensitivität, Spezifität, positiver und negativer Vorhersagewert und Treffsicherheit waren jeweils 100%, 14,3%, 44,4%, 100% und 49,2% für FDG PET/CT und 83,3%, 91,4%, 87%, 88,9% und 88,1% für FDGmarkierte Leukozyten-PET/CT, insofern man für die Diagnose einer Infektion einen visuellen Score >1b gewählt hatte. Wurde ein quantitativer Score >1b für eine positive Diagnose einer Infektion gewählt, so ergaben sich Werte von 100%, 20,6%, 47,1%, 100% und 53,4% für FDG-PET/CT und 95,7%, 76,5%, 73,3%, 96,3% und 84,2% für FDGmarkierte Leukozyten-PET/CT. Die optimale SUV-Schwelle war 8,8 (p = 0,006; die Sensitivität: 72,7%, Spezifität: 82,8%) und 5,3 (p < 0,001; die Sensitivität: 81,8%, Spezifität: 79,3%) für FDG und WBC-PET/CT, jeweils durch die ROC-Kurve-Analyse. Schlussfolgerung: FDG-markierte Leukozyten-PET/CT ist höherwertiger als FDG-PET/CT in der Bildgebung von Infektionen. Dabei scheint ein Grad >1b geeigneter zu sein, um eine Infektion zu erkennen.

 
  • References

  • 1 Aksoy SY, Asa S, Ozhan M. et al. FDG and FDG-labelled leucocyte PET/CT in the imaging of prosthetic joint infection. Eur J Nucl Med Mol Imaging 2014; 41: 556-564.
  • 2 Basu S, Zhuang H, Torigian DA. et al. Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin Nucl Med 2009; 39: 124-145.
  • 3 Bleeker-Rovers CP, de Kleijn E, Corstens FHM. et al. Clinical value of FDG-PET in patients with fever of unknown origin and patients suspected of focal infection or inflammation. Eur J Nucl Med Mol Imaging 2004; 31: 29-37.
  • 4 Chen SH, Ho KC, Hsieh PH. et al. Potential clinical role of 18F FDG-PET/CT in detecting hip prosthesis infection: a study in patients undergoing two-stage revision arthroplasty with an interim spacer. Q J Nucl Med Mol Imaging 2010; 54: 429-435.
  • 5 Dumarey N, Egrise D, Blocklet D. et al. Imaging infection with 18F-FDG-labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med 2006; 47: 625-632.
  • 6 Fidel JV, Donnelly JP, Oyenb WJG. et al. 18F-FDG PET/CT for diagnosing infectious complications in patients with severe neutropenia after intensive chemotherapy for haematological malignancy or stem cell transplantation. Eur J Nucl Med Mol Imaging 2012; 39: 120-128.
  • 7 Forstrom LA, Dunn WL, Mullan BP. et al. Biodistribution and dosimetry of [18F]fluorodeoxyglucose labelled leukocytes in normal human subjects. Nucl Med Commun 2002; 23: 721-725.
  • 8 Forstrom LA, Dunn WL, Rowe FA, Camilleri M. 111In-oxine-labelled granulocyte dosimetry in normal subjects. Nucl Med Commun 1995; 16: 349-356.
  • 9 Forstrom LA, Mullan BP, Hung JC. et al. 18F-FDG labelling of human leukocytes. Nucl Med Commun 2000; 21: 691-694.
  • 10 Jamar F, Buscombe J, Chitiet A. et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med 2013; 54: 647-658.
  • 11 Jones HA, Schofield JB, Krausz T. et al. Pulmonary fibrosis correlates with duration of tissue neutrophil activation. Am J Respir Crit Care Med 1998; 158: 620-628.
  • 12 Keidar Z, Militianu D, Melamed E. et al. The diabetic foot: Initial experience with 18F-FDG-PET/CT. J Nucl Med 2005; 46: 444-449.
  • 13 Kim EE, Pjura GA, Lowry PA. et al. Osteomyelitis complicating fracture: pitfalls of 111In leukocyte scintigraphy. AJR Am J Roentgenol 1987; 148: 927-930.
  • 14 King AD, Peters AM, Stuttle AW, Lavender JP. Imaging of bone infection with labelled white blood cells: role of contemporaneous bone marrow imaging. Eur J Nucl Med 1990; 17: 148-151.
  • 15 Kjaer A, Lebech AM, Eigtved A, Hojgaard L. Fever of unknown origin:prospective comparison of diagnostic value of 18F-FDG PET and 111In-granulocyte scintigraphy. Eur J Nucl Med Mol Imaging 2004; 31: 622-626.
  • 16 Lafont P, Morelec I, Fraysse M. et al. 18F-FDG labelled leukocytes in vitro functional tests: viability, chemotaxis and phagocytosis assays. Open Nucl Med J 2011; 3: 25-29.
  • 17 McAfee JG, Samin A. In-111 labeled leukocytes: a review of problems in image interpretation. Radiology 1985; 155: 221-229.
  • 18 Osman S, Danpur HJ. The use of 2-[18F] fluoro-2-deoxy-D-glucose as a potential in vitro agent for labelling granulocytes for clinical studies by positron emission tomography. Int J Rad Appl Instrum B 1992; 19: 183-190.
  • 19 Palestro CJ, Kim CK, Swyer AJ. et al. Total-hip arthroplasty: periprosthetic indium-111-labeled leukocyte activity and complementary technetium-99m-sulfur colloid imaging in suspected infection. J Nucl Med 1990; 31: 1950-1955.
  • 20 Palestro CJ, Love C. Decreased sensitivity of 18F-fluorodeoxyglucose imaging in infection and inflammation. Semin Nucl Med 2012; 42: 261-266.
  • 21 Palestro CJ, Swyer AJ, Kim CK, Goldsmith SJ. Infected knee prosthesis: diagnosis with In-111 leukocyte, Tc-99m sulfur colloid, and Tc-99m MDP imaging. Radiology 1991; 179: 645-648.
  • 22 Pellegrino D, Bonab AA, Dragotakes SC. et al. Inflammation and infection: imaging properties of 18F-FDG-labeled white blood cells versus 18F-FDG. J Nucl Med 2005; 46: 1522-1530.
  • 23 Pio BS, Byrne FR, Aranda R. et al. Non invasive quantification of bowel inflammation through positron emission tomography imaging of 2-deoxy-2-[18F]-fluoro-D-glucose labelled white blood cells. Mol Imaging Biol 2003; 5: 271-277.
  • 24 Pring DJ, Henderson RG, Keshavarzian A. et al. Indium-granulocyte scanning in the painful prosthetic joint. AJR Am J Roentgenol 1986; 147: 167-172.
  • 25 Rini JN, Bhargava KK, Tronco GG. et al. PET with FDG-labeled leukocytes versus scintigraphy with 111In-oxine-labeled leukocytes for detection of infection. Radiology 2006; 238: 978-987.
  • 26 Rüther W, Hotze A, MÖller F. et al. Diagnosis of bone and joint infection by leucocyte scintigraphy. A comparative study with 99mTc-HMPAO-labelled leucocytes, 99mTc-labelled antigranulocyte antibodies and 99mTc-labelled nanocolloid. Arch Orthop Trauma Surg 1990; 110: 26-32.
  • 27 Saguwara Y, Braun DK, Kison PV. et al. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron-emission tomography: Preliminary results. Eur J Nucl Med 1998; 25: 1238-1243.
  • 28 Schauwecker DS. Osteomyelitis: diagnosis with In-111 labeled leukocytes. Radiology 1989; 171: 141-146.
  • 29 Stumpe KD, Notzli HP, Zanetti M. et al. FDG PET for differentiation of infection and aseptic loosening in total hip replacements: Comparison with conventional radiography and three-phase bone scintigraphy. Radiology 2004; 231: 333-341.
  • 30 Uno K, Matsui N, Nohira K. et al. Indium-111 leukocyte imaging in patients with rheumatoid arthritis. J Nucl Med 1986; 27: 339-344.
  • 31 Van Nostrand D, Abreu SH, Callaghan JJ. et al. In-111-labeled white blood cell uptake in noninfected closed fracture in humans: prospective study. Radiology 1988; 167: 495-498.
  • 32 Ward PA, Lentsch AB. The acute inflammatory response and its regulation. Arch Surg 1999; 134: 666-669.
  • 33 Whalen JL, Brown ML, McLeod R, Fitzgerald Jr. RH. Limitations of indium leukocyte imaging for the diagnosis of spine infections. Spine (Phila Pa 1976) 1991; 16: 193-197.
  • 34 Zhuang HA. 18-Fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 2002; 32: 47-59.
  • 35 Zhuang HM, Cortes-Blanco A, Pourdehnad M. et al. Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders?. Nucl Med Commun 2001; 22: 1123-1128.