Nuklearmedizin 2016; 55(01): 21-28
DOI: 10.3413/Nukmed-0764-15-08
Review
Schattauer GmbH

Pharmacological treatment with L-DOPA may reduce striatal dopamine transporter binding in in vivo imaging studies

Pharmakologische Behandlung mit L-DOPA kann die striatale Dopamintransporterbindung in In-vivo- Bildgebungsstudien reduzieren
S. Nikolaus
1   Clinic of Nuclear Medicine, University Hospital Düsseldorf, Germany
,
C. Antke
1   Clinic of Nuclear Medicine, University Hospital Düsseldorf, Germany
,
H. Hautzel
1   Clinic of Nuclear Medicine, University Hospital Düsseldorf, Germany
,
H.-W. Mueller
1   Clinic of Nuclear Medicine, University Hospital Düsseldorf, Germany
› Author Affiliations
Further Information

Publication History

received: 18 August 2015

accepted in revised form: 20 November 2015

Publication Date:
19 December 2017 (online)

Summary

Numerous neurologic and psychiatric conditions are treated with pharmacological compounds, which lead to an increase of synaptic dopamine (DA) levels. One example is the DA precursor L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted to DA in the presynaptic terminal. If the increase of DA concentrations in the synaptic cleft leads to competition with exogenous radioligands for presynaptic binding sites, this may have implications for DA transporter (DAT) imaging studies in patients under DAergic medication.

This paper gives an overview on those findings, which, so far, have been obtained on DAT binding in human Parkinson’s disease after treatment with L-DOPA. Findings, moreover, are related to results obtained on rats, mice or non-human primates. Results indicate that DAT imaging may be reduced in the striata of healthy animals, in the unlesioned striata of animal models of unilateral Parkinson’s disease and in less severly impaired striata of Parkinsonian patients, if animal or human subjects are under acute or subchronic treatment with L-DOPA. If also striatal DAT binding is susceptible to alterations of synaptic DA levels, this may allow to quantify DA reuptake in analogy to DA release by assessing the competition between endogenous DA and the administered exogenous DAT radioligand.

Zusammenfassung

Viele neurologische und psychiatrische Erkrankungen werden mit Medikamenten behandelt, die die synaptischen Dopamin(DA)-Konzentration erhöhen. Ein Beispiel ist das DA-Vorläufermolekül L-3,4-Dihydroxyphenyl alanin (L-DOPA), das in der präsynaptischen Endigung zu DA umgesetzt wird. Falls der Anstieg der synaptischen DA-Konzentration zu einer Kompetiton mit exogenen Radioliganden um die präsynaptischen Bindungsstellen führt, kann dies Implikationen für die Dopamintransporter(DAT)-Bildgebung bei Patienten unter DAerger Medikation haben.

Diese Arbeit gibt einen Überblick über die DAT-Befunde, die bislang an Parkinson-Patienten nach Behandlung mit L-DOPA vorliegen. Diese Resultate werden in Beziehung zu den Befunden an Mäusen, Ratten und nichthumanen Primaten gesetzt. Die Ergebnisse zeigen, dass die DAT-Bindung in den Striata gesunder Tiere, in den unlädierten Striata von Hemiparkinsonmodellen und in den weniger schwer geschädigten Striata von Parkinson-patienten reduziert sein kann, wenn Menschen oder Tiere unter akuter oder subchronischer Behandlung mit L-DOPA stehen. Falls die striatale DAT-Bindung für Änderungen der synaptischen DA-Konzentrationen empfindlich ist, erlaubt dies die Quantifizierung der DA-Wiederaufnahme in Analogie zur DA-Freisetzung durch die Messung der Kompetittion zwischen endogenem DA und dem verabreichten exogenen DAT-Radioliganden.

 
  • References

  • 1 Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J 2012; 279: 1156-1166.
  • 2 Booij J, de Bruin K, Gunning WB. Repeated administration of D-amphetamine induces loss of [123I]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study. Nucl Med Biol 2006; 33: 409-411.
  • 3 Booij J, van Loon G, de Bruin K, Voorn P. Acute administration of haloperidol does not influence 123I-FP-CIT binding to the dopamine transporter. J Nucl Med 2014; 55: 647-649.
  • 4 Cenci MA, Ohlin KE, Odin P. Current options and future possibilities for the treatment of dyskinesia and motor fluctuations in Parkinson’s disease. CNS Neurol Disord Drug Targets 2011; 10: 670-684.
  • 5 Chi L, Reith MEA. Substance-induce trafficking of the doapmine transporter in heterologouslyexpressing cells and in rat striatal synaptosomal preparations. J Pharmacol Exp Ther 2003; 307: 729-736.
  • 6 Depboylu C, Maurer L, Matusch A. et al. Effect of long-term treatment with pramipexole or levodopa on presynaptic markers assessed by longitudinal [123I]FP-CIT SPECT and histochemistry. Neuroimage 2013; 79: 191-200.
  • 7 De Souza Silva MA, Mattern C, Häcker R. et al. Increased neostriatal dopamine activity after intraperitoneal or intranasal administration of L-DOPA: on the role of benserazide pretreatment. Synapse 1997; 27: 294-302.
  • 8 Dresel SH, Kung MP, Plossl K. et al. Pharmacological effects of dopaminergic drugs on in vivo binding of [99mTc]TRODAT-1 to the central dopamine transporters in rats. Eur J Nucl Med 1998; 25: 31-93.
  • 9 Fernagut PO, Li Q, Dovero S. et al. Dopamine transporter binding is unaffected by L-DOPA administration in normal and MPTP-treated monkeys. PLoS One 2010; 5: e14053.
  • 10 Gnanalingham KK, Robertson RG. The effects of chronic continuous versus intermittent levodopa treatments on striatal and extrastriatal D1 and D2 dopamine receptors and dopamine uptake sites in the 6-hydroxydopamine lesioned rat--an autoradiographic study. Brain Res 1994; 640: 185-194.
  • 11 Gordon I, Weizman R, Rehavi M. Modulatory effect of agents active in the presynaptic dopaminergic system on the striatal dopamine transporter. Eur J Pharmacol 1996; 298: 27-30.
  • 12 Guttman M, Stewart D, Hussey D. et al. Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD. Neurology 2001; 56: 1559-1564.
  • 13 Hautzel H. Cerebral MRT and neuronuclear medicine: Comparison of pathological findings in clinical settings. Der Nuklearmediziner 2014; 37: 119-131.
  • 14 Innis RB, Marek KL, Sheff K. et al. Effect of treatment with L-dopa/carbidopa or L-selegiline on striatal dopamine transporter SPECT imaging with [123I]beta-CIT. Mov Disord 1999; 14: 436-442.
  • 15 Ikawa K, Watanabe A, Kaneno S, Toru M. Modulation of [3H]mazindol binding sites in rat striatum by dopaminergic agents. Eur J Pharmacol 1993; 250: 261-266.
  • 16 Kotian P, Mascarella SW, Abraham P. et al. Synthesis, ligand binding, and quantitative structure-activity relationship study of 3 beta-(4’-substituted phenyl)-2 beta-heterocyclic tropanes: evidence for an electrostatic interaction at the 2 beta-position. J Med Chem 1996; 39: 2753-2763.
  • 17 Kung MP, Stevenson DA, Plossl K. et al. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med 1997; 24: 372-380.
  • 18 Laruelle M, Baldwin M, Malison RT. et al. Innis RB. SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT: pharmacological characterization of brain uptake in nonhuman primates. Synapse 1993; 13: 295-309.
  • 19 Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 2000; 20: 423-451.
  • 20 Lee FJ, Pristupa ZB, Ciliax BJ. et al. The dopamine transporter carboxyl-terminal tail. Truncation/substitution mutants selectively confer high affinity dopamine uptake while attenuating recognition of the ligand binding domain. J Biol Chem 1996; 271: 20885-20894.
  • 21 Misu Y, Goshima Y, Ueda H, Okamura H. Neurobiology of L-DOPAergic systems. Prog Neurobiol 1996; 49: 415-454.
  • 22 Moghaddam R, Bunney BJ. Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivomicrodialysis study. J Neurochem 1990; 54: 1755-1760.
  • 23 Moody CA, Granneman JG, Bannon MJ. Dopamine transporter binding in rat striatum and nucleus accumbens is unaltered following chronic changes in dopamine levels. Neurosci Lett 1996; 217: 55-57.
  • 24 Neumeyer JL, Tamagnan G, Wang S. et al. N-substituted analogs of 2 beta-carbomethoxy-3 beta-(4’-iodophenyl)tropane (beta-CIT) with selectiveaffinity to dopamine or serotonin transporters in the rat forebrain. J Med Chem 1996; 39: 543-548.
  • 25 Nikolaus S, Antke C, Kley K. et al. Investigating the dopaminergic synapse in vivo. I. Molecular imaging studies in humans. Rev Neurosci 2007; 18: 439-472.
  • 26 Nikolaus S, Antke C, Müller HW. In vivo imaging of synaptic function in the central nervous system. I. Movement disorders and dementia. Behav Brain Res 2009; 204: 1-31.
  • 27 Nikolaus S, Antke C, Müller HW. In vivo imaging of synaptic function in the central nervous system. II. Mental and affective disorders. Behav Brain Res 2009; 204: 32-66.
  • 28 Nikolaus S, Antke C, Kley K. et al. Pre-treatment with haloperidol reduces [123I]FP-CIT binding to the dopamine transporter in the rat striatum - an in vivo imaging study with a dedicated small animal SPECT. J Nucl Med 2009; 50: 1147-1152.
  • 29 Nikolaus S, Beu M, Antke C, Müller HW. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders - Results from in vivo imaging studies. Rev Neurosci 2010; 21: 119-139.
  • 30 Nikolaus S, Hautzel H, Heinzel A, Müller HW. Key players in major and bipolar depression - A retrospective analysis of in vivo imaging studies. Behav Brain Res 2012; 232: 358-390.
  • 31 Nikolaus S, Beu M, Hautzel H. et al. Effects of L-DOPA on striatal iodine-123-FP-CIT binding and behavioral parameters in the rat. Nucl Med Comm 2013; 34: 1223-1232.
  • 32 Nikolaus S, Beu M, De Souza Silva AM. et al. Relationship between L-DOPA-induced reduction in motor and exploratory activity and degree of DAT binding in the rat. Front Behav Neurosci 2014; 8: e431.
  • 33 Nikolaus S, Hautzel H, Müller HW. Neurochemical dysfunction in treated and nontreated schizophrenia - a retrospective analysis of in vivo imaging studies. Rev Neurosci 2014; 25: 25-96.
  • 34 Nurmi E, Bergman J, Eskola O. et al. Reproducibility and effect of levodopa on dopamine transporter function measurements: a [18F]CFT PET study. J Cereb Blood Flow Metab 2000; 20: 1604-1609.
  • 35 Nurmi E, Bergman J, Eskola O. et al. Progression of dopaminergic hypofunction in striatal subregions in Parkinson’s disease using [18F]CFT PET. Synapse 2003; 48: 109-115.
  • 36 Okereke CS. Role of integrative pharmacokinetic and pharmacodynamic optimization strategy in the management of Parkinson“s disease patients experiencing motor fluctuations with levodopa. J Pharm Pharm Sci 2002; 5: 146-161.
  • 37 Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs Levodopa on Parkinson’s disease progression. JAMA 2002; 287: 1653-1661.
  • 38 Parkinson Study Group. Levodopa and the progression of Parkinson’s disease. N Engl J Med 2004; 46: 2498-2508.
  • 39 Pehek EA. Comparison of effects of haloperidol administration on amphetamine-stimulated dopamine release in the rat medial prefrontal cortex and dorsal striatum. J Pharmacol Exp Ther 1999; 289: 14-23.
  • 40 Plotkin M, Amthauer H. Klaffke et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm 2005; 112: 677-692.
  • 41 Pöpperl G, Tatsch K, Ruzicka E. et al. Comparison of alpha-dihydroergocryptine and levodopa monotherapy in Parkinson’s disease: assessment of changes in DAT binding with [123I]IPT SPECT. J Neural Transm. 2004; 111: 1041-1052.
  • 42 Qi Z, Miller GW, Voit EO. A mathematical model of presynaptic dopamine homeostasis: implications for schizophrenia. Pharmacopsychiatry 2008; 41 (Suppl. 01) S89-S98.
  • 43 Reneman L, Booij J, Lavalaye J. et al. Use of amphetamine by recreational users of ecstasy (MDMA) is associated with reduced striatal dopamine transporter densities: a [123I]beta-CIT SPECT study--preliminary report. Psychopharmacology (Berl) 2002; 159: 335-340.
  • 44 Rioux L, Frohna PA, Joyce JN, Schneider JS. The effects of chronic levodopa treatment on pre- and postsynaptic markers of dopaminergic function in striatum of parkinsonian monkeys. Mov Disord 1997; 12: 148-158.
  • 45 Saunders C, Ferrer JV, Shi L. et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci USA 2000; 97: 6850-6855.
  • 46 Scheffel U, Pögün S, Stathis M. et al. In vivo labeling of cocaine binding sites on dopamine transporters with [3H]WIN 35,428. J Pharmacol Exp Ther 1991; 257: 954-958.
  • 47 Scheffel U, Steinert C, Kim SE. et al. Effect of dopaminergic drugs on the in vivo binding of [3H]WIN 35,428 to central dopamine transporters. Synapse 1996; 23: 61-69.
  • 48 Schillaci O, Pierantozzi M, Filippi L. et al. The effect of levodopa therapy on dopamine transporter SPECT imaging with 123I-FP-CIT in patients with parkinson’s disease. Eur J Nucl Med Mol Imaging 2005; 32: 1452-1456.
  • 49 Schmitt GJ, Dresel S, Frodl T. et al. Dual-isotope SPECT imaging of striatal dopamine: a comparative study between never-treated and haloperidol-treated first-episode schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 2012; 262: 183-191.
  • 50 Shen H, Kannari K, Yamato H. et al. Effects of benserazide on L-DOPA-derived extracellular dopamine levels and aromatic L-amino acid decarboxylase activity in the striatum of 6-hydroxydopamine-lesioned rats. Tohoku J Exp Med 2003; 199: 149-159.
  • 51 Sossi V, Dinelle K, Schulzer M. et al. Levodopa and pramipexole effects on presynaptic dopamine PET markers and estimated dopamine release. Eur J Nucl Med Mol Imaging 2010; 37: 2364-2370.
  • 52 Staffen W, Mair A, Unterrainer J. et al. Measuring the progression of idiopathic Parkinson’s disease with [123I] beta-CIT SPECT. J Neural Transm 2000; 107: 543-552.
  • 53 Thibaut F, Bonet JJ, Vaugeois JM, Costentin J. Pharmacological modifications of dopamine transmission do not influence the striatal in vivo binding of [3H]mazindol or [3H]cocaine binding in mice. Neurosci lett 1996; 205: 145-148.
  • 54 Tissingh G, Booij J, Bergmans P. et al. Iodine-123-N-omega-fluoropropyl-2beta-carbomethoxy-3beta-(4-iodophenyl)tropane SPECT in healthy controls and early-stage, drug-naive Parkinson’s disease. J Nucl Med 1998; 39: 1143-1148.
  • 55 Tissingh G, Bergmans P, Booij J. et al. Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [123I]beta-CIT SPECT. J Neurol 1998; 245: 14-20.
  • 56 Westerink BHC, de Vries JB. On the mechanism of neuroleptic induced increase in striatal dopamine release: brain dialysis provides direct evidence for mediation by autoreceptors on nerve terminals. Neurosci Lett 1989; 99: 197-202.
  • 57 Winogrodzka A, Booij J, Wolters ECh. Disease-related and drug-induced changes in dopamine transporter expression might undermine the reliability of imaging studies of disease progression in Parkinson’s disease. Parkinsonism Relat Disord 2005; 11: 475-484.
  • 58 Zahniser NR, Sorkin A. Trafficking of dopamine transporters in psychostimulant actions. Semin Cell Dev Biol 2009; 20: 411-417.