Nuklearmedizin 2008; 47(05): 210-214
DOI: 10.3413/nukmed-0148
Original Article
Schattauer GmbH

Impact of the lower energy threshold on the NEMA NU2-2001 count-rate performance of a LSO based PET-CT scanner

Einfluss der unteren Energieschwelle auf das NEMA NU2-2001 Zählratenverhalten eines LSO-basierten PET-CT-Scanners
J. Eckardt
1   Department of Nuclear Medicine; University Hospital Münster
,
H. Herzog
2   Institute of Neuroscience and Biophysics Medicine, Forschungszentrum Jülich
,
K. P. Schäfers
1   Department of Nuclear Medicine; University Hospital Münster
,
S. Käpplinger
3   Siemens Medical Solutions, Molecular Imaging, Germany
,
O. Schober
1   Department of Nuclear Medicine; University Hospital Münster
› Author Affiliations
Further Information

Publication History

Received: 14 September 2007

accepted in revised form: 10 March 2008

Publication Date:
05 January 2018 (online)

Summary

The aim of this study was to investigate the impact of the lower energy threshold (LET) on the NEMA NU2–2001 count-rate performance of a LSO-based PET scanner (Siemens PET-CT Biograph Sensation 16). The quantitative measurements were focused on three different aspects: noise equivalent count rate (NEC), scatter fraction, and absolute sensitivity. Methods: According to the NEMA-NU2–2001 protocol count-rate-performance (NEC-2R, scatter fraction) and sensitivity were evaluated performing serial measurements at LETs of 350, 375, 400, 410, 420, 430, 440, and 450 keV (the upper energy threshold was fixed to 650 keV). NEMA protocols were adapted to account for the intrinsic radioactivity of 176Lu in the LSO crystals. Results: Up to a radioactivity concentration of 8 kBq/ml the highest NECrates were obtained at an LET of 410 keV, between 8 and 20 kBq/ml at an LET of 420 keV and above 20 kBq/ml at an LET of 430 keV. The overall NEC maximum was 67 kcps at 430 keV (at 28 kBq/ml). The minimum scatter fraction was measured at a radioactivity concentration of ~ 0.5 kBq/ml. The scatter fraction decreased continuously from 45% at an energy threshold of 350 keV to 24% at 450 keV. The maximum sensitivity of 5.8 kcps/MBq, was obtained at an LET of 350 keV and the minimum sensitivity of 4.2 kcps/MBq at an LET of 450 keV. At the LET with the maximum NEC-rate (430 keV) the sensitivity was 4.8 kcps/MBq. Conclusion: The optimal count-rate performance of the LSO-based PET system was found at LETs between 410 keV and 430 keV depending on the actual radioactivity concentration placed in the scanner. A global maximum in NEC count rate was obtained at an LET of 430 keV.

Zusammenfassung

Ziel: Das NEMA-NU2-2001-Zählratenverhalten eines LSO-basierten PET Scanners (Siemens PET-CT Biograph Sensation 16) wurden in Abhängigkeit von der unteren Energieschwelle (lower energy threshold, LET) untersucht. Die Messungen erstreckten sich dabei auf die rauschäquivalente Zählrate (NEC-2R), den Streuanteil und die absolute Empfindlichkeit. Methode: In seriellen Messungen bei LETs von 350, 375, 400, 410, 420, 430, 440 bzw. 450 keV (obere Energieschwelle fest bei 650 keV) wurden das Zählratenverhalten (NEC-2R und Streuanteil) und die Sensitivität entsprechend des NEMA-NU2-2001-Protokolls bestimmt. Zur Berücksichtigung der intrinsischen Aktivität des 176Lu-Anteils der LSO-Kristalle wurde das NEMA-Protokoll angepasst. Ergebnisse: Bis zu der Aktivitätskonzentration von 8 kBq/ml wurden die höchsten NEC-2R bei einem LET von 410 keV gemessen, zwischen 8 und 20 kBq/ml bei einem LET von 420 keV und oberhalb von 20 kBq/ml bei einem LET von 430 keV. Das absolute Maximum lag bei 67 kcps und einem LET von 430 keV (28 kBq/ml). Das Minimum des Streuanteils wurde bei einer Aktivitätskonzentration von etwa 0,5 kBq/ml gemessen. Der Streuanteil nahm kontinuierlich von 45% bei einem LET von 350 keV bis auf 24% bei 450 keV ab. Die maximale absolute Empfindlichkeit lag bei 5,8 kcps/MBq und einem LET von 350 keV, die minimale bei 4,2 kcps/MBq und einem LET von 450 keV. Schlussfolgerung: Das optimale Zählratenverhalten des LSO-PET-Systems wurde, abhängig von der Aktivitätskonzentration im Sichtfeld des Scanners, bei LETs zwischen 410 keV und 430 keV gefunden. Das absolute Maximum der NEC-2R lag bei einem LET von 430 keV.

 
  • References

  • 1 Brambilla M, Secco C, Dominietto M. et al. Performance characteristics obtained for a new 3-di- mensional lutetium oxyorthosilicate-based whole-body PET/CT scanner with the National Electrical Manufacturers Association NU 2-2001 standard. J Nucl Med. 2005; 46: 2083-2091.
  • 2 Bettinardi V, Danna M, Savi A. et al. Performance evaluation of the new whole-body PET/CT scanner: Discovery ST. Eur J Nucl Med Mol Ima 2004; 31: 867-881.
  • 3 Melcher CL, Schweitzer JS. A promising new scintillator: cerium doped lutetium oxorthosilicate. Nucl Instr Meth in Phys Res 1992; A314: 212-214.
  • 4 Erdi YE, Nehmeh SA, Mulnix T. et al. PET Performance measurements for an LSO-based combined PET/CT scanner using the National Electrical Manufacturers Association NU 2-2001 Standard. J Nucl Med 2004; 45: 813-821.
  • 5 Eriksson L, Watson CC, Wienhard K. et al. The ECAT HRRT: an example ofNEMA scatter estimation issues for LSO based PET systems. IEEE Nuc Sci Symp Conf Rec 2003; 3: 1941-1944.
  • 6 Everaert H, Vanhove C, Lahoutte T. et al. Optimal dose of 18F-FDG required for whole-body PET using an LSO PET camera. Eur J Nucl Med Mol Ima 2003; 30: 1615-1619.
  • 7 Fedorov A, Korzhik M, Lobko A. et al. Light yield temperature dependence of lutetium-based scintillation crystals. Nucl Instrum Methods Phys Res A 2005; 537: 276-278.
  • 8 Herzog H, Tellmann L, Hocke C. et al. NEMA NU2-2001 guided performance evaluation of four Siemens ECAT PET scanners. IEEE Trans Nucl Sci 2004; 51: 2662-2669.
  • 9 Herzog HR, Tellmann L, Mulnix T. et al. ACCEL vs. PICO3D performance: a NEMA NU2-2001 based test. Mol Imaging Biol 2004; 6: 79.
  • 10 Hoffman EJ, Huang SC, Phelps ME. et al. Quanti- tation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 1981; 5: 391-400.
  • 11 Ishibashi H, Shimizu K, Susa K. et al. Cerium doped GSO scintillators and its application to position sensitive detectors. IEEE Trans Nucl Sci 1989; 36: 170-172.
  • 12 Karp JS, Surti S, Daube-Witherspoon ME. et al. Performance of a brain PET camera based on anger-logic gadolinium oxyorthosilicate detectors. J Nucl Med 2003; 44: 1340-1349.
  • 13 Martinez CM, Bercier Y, Schwaiger M. et al. PET/ CT Biograph™ Sensation 16. Performance improvement using faster electronics. Nucl Med 2006; 45: 126-133.
  • 14 National Electrical Manufacturers Association. NEMA Standards Publication NU 2-2001. Performance Measurements of Positron Emission To-mographs. Washington, DC: National Electrical Manufacturers Association; 2001
  • 15 Puterbaugh KC, Breeding JE, Musrock MS. et al. Performance comparison of a current LSO PET Scanner versus the same scanner with upgraded electronics. IEEE Nuc Sci Symp Conf Rec 2003; 3: 1932-1935.
  • 16 Surti S, Karp JS. Imaging characteristics ofa3-di- mensional GSO whole-body PET camera. J Nucl Med. 2004; 45: 1040-1049.
  • 17 Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivit: Relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 1990; 37: 783-788.
  • 18 Watson CC, Casey ME, Eriksson L. et al. NEMA NU 2 performance tests for scanners with intrinsic radioactivity. J Nucl Med 2004; 45: 822-826.
  • 19 Yamamoto S. Investigation of single, random, and true counts from natural radioactivity in LSO- based clinical PET. Ann Nucl Med 2005; 19: 109-114.