Nuklearmedizin 2010; 49(04): 139-147
DOI: 10.3413/nukmed-0290
Original article
Schattauer GmbH

IBZM SPECT and FDG PET in the differential diagnosis of Parkinsonian syndromes

Comparison with respect to inter-rater agreementIBZM-SPECT und FDG-PET zur Differenzial-diagnose der Parkinson-SyndromeVergleich bezüglich Interrater-Reliabilität
T. Derlin
1   Department of Nuclear Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
,
W. Afzal
1   Department of Nuclear Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
,
F. Wilke
1   Department of Nuclear Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
,
I. Apostolova
2   Department of Nuclear Medicine, Charité, Berlin, Germany
,
S. Klutmann
1   Department of Nuclear Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
,
P. T. Meyer
3   Department of Nuclear Medicine, University Hospital, Freiburg, Germany
,
C. Buhmann
4   Department of Neurology, University Medical Center, Hamburg, Germany
,
S. Hesse
5   Department of Nuclear Medicine, University Hospital, Leipzig, Germany
,
R. Buchert
2   Department of Nuclear Medicine, Charité, Berlin, Germany
› Author Affiliations
Further Information

Publication History

received: 27 December 2009

accepted in revised form: 12 May 2010

Publication Date:
24 January 2018 (online)

Summary

Aim: Both IBZM SPECT and FDG PET may be used for differentiation between Parkinson's disease (PD) and atypical neurodegenerative parkinsonian syndromes (APS). However, there are only very limited data of both modalities in the same subjects. The present study compared both modalities with respect to inter-rater agreement in 30 patients with neurodegenerative parkinsonian syndromes (PS) confirmed by FP-CIT SPECT. Methods: IBZM SPECT and FDG PET were categorized as PD or APS by visual inspection of standardized report pages and statistical parametric maps (SPMs). Categorization was performed independently by five readers. Inter-rater agreement was quantified using Cohen's kappa κ. Results: IBZM SPECT resulted in PD and APS in 11 and 19 cases, respectively (majoritarian categorization). Inter-rater agreement was κ = 0.64 ± 0.10. FDG PET resulted in PD and APS in 12 and 18 cases, respectively (majoritarian categorization). Inter-rater agreement was κ = 0.68 ± 0.07. Majoritarian diagnosis disagreed between IBZM SPECT and FDG PET in 13 cases (43%). Semi-quantitative analysis of IBZM SPECT using the striatum-to-reference distribution volume ratio was in good agreement with visual categorization (area under ROC curve 0.92). Conclusion: In neurodegenerative PS, inter-rater agreement of visual analysis is substantial in both IBZM SPECT and FDG PET. Furthermore, (I) visual analysis of IBZM SPECT is reliable if adequate standardized image display is used, (II) visual analysis of FDG SPMs allows unique categorization as either PD or APS in most subjects, and (III) IBZM SPECT and FDG PET are discordant in a significant fraction of cases.

Zusammenfassung

IBZM SPECT und FDG PET können zur Differenzierung von Morbus Parkinson (PD) und atypischen neurodegenerativen Parkinson-Syndromen (APS) eingesetzt werden. Dennoch liegen nur wenige vergleichende Daten in denselben Patienten vor. Die vorliegende Studie vergleicht beide Modalitäten hinsichtlich Interrater-Reliabilität in 30 Patienten mit neurodegenerativen Parkinsonsyndrom (PS), das mittels FPCIT SPECT bestätigt wurde. Methodik: IBZM SPECT und FDG PET wurden nach visueller Befundung standardisierter Darstellungen als PD oder APS kategorisiert. Die Kategorisierung erfolgte durch fünf unabhängige Auswerter. Interrater-Reliabilität wurde mit Cohen's kappa κ gemessen. Ergebnisse: IBZM SPECT ergab PD in 11 Fällen, APS in 19 Fällen (Mehrheitsdiagnose). Die Interrater-Reliabilität war κ = 0,64 ± 0,10. FDG PET resultierte in PD in 12 Fällen, in APS in 18 Fällen (Mehrheitsdiagnose). Die Interrater-Reliabilität war κ = 0,68 ± 0,07. IBZM SPECT und FDG PET lieferten diskordante Ergebnisse in 13 Fällen (43%). Semiquantitative Analyse der IBZM SPECT mittels striatum-to-reference distribution volume ratio zeigte eine gute Übereinstimmung mit der visuellen Kategorisierung (Fläche unter der ROC Kurve 0,92). Schlussfolgerung: Bei neurodegenerativen PS (I) ist die visuelle Analyse der IBZM SPECT zuverlässig, sofern eine adäquate standardisierte Darstellung verwendet wird, (II) erlaubt die visuelle Analyse von FDG PET Statistical Parametric Maps in den meisten Fällen eine klare Kategorisierung als PD oder APS, (III) ist die Interrater-Reliabilität der visuellen Analyse substanziell, gleichermaßen für die IBZM SPECT als auch für die FDG PET, und (IV) liefern IBZM SPECT und FDG PET in einer signifikanten Zahl der Fälle diskordante Ergebnisse.

 
  • References

  • 1 Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease. Lancet Neurol 2006; 5: 75-86.
  • 2 Piccini P, Whone A. Functional brain imaging in the differential diagnosis of Parkinson's disease. Lancet Neurol 2004; 3: 284-290.
  • 3 Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002; 125: 861-870.
  • 4 Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181-184.
  • 5 Plotkin M, Amthauer H, Klaffke S. et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm 2005; 112: 677-692.
  • 6 Kuikka JT, Bergstrom KA, Ahonen A. et al. Comparison of iodine-123 labelled 2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and 2 beta-carbome-thoxy-3 beta-(4-iodophenyl)-N-(3-fluoropropyl)nortropane for imaging of the dopamine transporter in the living human brain. Eur J Nucl Med 1995; 22: 356-360.
  • 7 Abi-Dargham A, Gandelman MS, DeErausquin GA. et al. SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT. J Nucl Med 1996; 37: 1129-1133.
  • 8 Benamer TS, Patterson J, Grosset DG. et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000; 15: 503-510.
  • 9 Marshall VL, Reininger CB, Marquardt M. et al. Parkinson's disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: A 3-year European multicenter study with repeat [123I]FP-CIT SPECT. Mov Disord 2008; 24: 499-507.
  • 10 Scherfler C, Schwarz J, Antonini A. et al. Role of DAT-SPECT in the diagnostic work up of parkinsonism. Mov Disord 2007; 22: 1229-1238.
  • 11 Pirker W, Asenbaum S, Bencsits G. et al. [123I]beta-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 2000; 15: 1158-1167.
  • 12 Braak H, Del Tredici K, Rub U. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003; 24: 197-211.
  • 13 Yoshida M. Multiple system atrophy: alpha-synuclein and neuronal degeneration. Neuropathology 2007; 27: 484-493.
  • 14 Santpere G, Ferrer I. Delineation of early changes in cases with progressive supranuclear palsy-like pathology. Astrocytes in striatum are primary targets of tau phosphorylation and GFAP oxidation. Brain Pathol 2009; 19: 177-187.
  • 15 Brucke T, Tsai YF, McLellan C. et al. In vitro binding properties and autoradiographic imaging of 3-iodobenzamide ([125I]-IBZM): a potential imaging ligand for D-2 dopamine receptors in SPECT. Life Sci 1988; 42: 2097-2104.
  • 16 Kung HF, Alavi A, Chang W. et al. In vivo SPECT imaging of CNS D-2 dopamine receptors: initial studies with iodine-123-IBZM in humans. J Nucl Med 1990; 31: 573-579.
  • 17 Tatsch K, Schwarz J, Oertel WH, Kirsch CM. SPECT imaging of dopamine D2 receptors with 123I-IBZM: initial experience in controls and patients with Parkinson's syndrome and Wilson's disease. Nucl Med Commun 1991; 12: 699-707.
  • 18 Van Royen E, Verhoeff NF, Speelman JD. et al. Multiple system atrophy and progressive supranuclear palsy. Diminished striatal D2 dopamine receptor activity demonstrated by 123I-IBZM single photon emission computed tomography. Arch Neurol 1993; 50: 513-516.
  • 19 Buchert R, Berding G, Wilke F. et al. IBZM tool: a fully automated expert system for the evaluation of IBZM SPECT studies. Eur J Nucl Med Mol Imaging 2006; 33: 1073-1083.
  • 20 Eidelberg D, Moeller JR, Dhawan V. et al. The metabolic anatomy of Parkinson's disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies. Mov Disord 1990; 5: 203-213.
  • 21 Eckert T, Barnes A, Dhawan V. et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005; 26: 912-921.
  • 22 Klaffke S, Kuhn AA, Plotkin M. et al. Dopamine transporters, D2 receptors, and glucose metabolism in corticobasal degeneration. Mov Disord 2006; 21: 1724-1727.
  • 23 Gibb WR, Lees AJ. A comparison of clinical and pathological features of young- and old-onset Parkinson's disease. Neurology 1988; 38: 1402-1406.
  • 24 Gilman S, Low P, Quinn N. et al. Consensus statement on the diagnosis of multiple system atrophy. American Autonomic Society and American Academy of Neurology. Clin Auton Res 1998; 8: 359-362.
  • 25 Litvan I, Agid Y, Calne D. et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996; 47: 1-9.
  • 26 McKeith IG, Galasko D, Kosaka K. et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996; 47: 1113-1124.
  • 27 Tatsch K, Asenbaum S, Bartenstein P. et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPECT using 123I-labelled dopamine D2 receptor ligands. Eur J Nucl Med 2002; 29: BP23-BP29.
  • 28 Verhoeff NP, Brücke T, Podreka I. et al. Dynamic SPECT in two healthy volunteers to determine the optimal time for in vivo D2 dopamine receptor imaging with 123I-IBZM using the rotating gamma camera. Nucl Med Commun 1991; 12: 687-697.
  • 29 Friston KJ, Holmes AP, Worsley KJ. et al. Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 1995; 2: 189-210.
  • 30 Vlaar AM, van Kroonenburgh MJ, Kessels AG, Weber WE. Meta-analysis of the literature on diagnostic accuracy of SPECT in parkinsonian syndromes. BMC Neurol 2007; 7: 27.
  • 31 Piggott MA, Marshall EF, Thomas N. et al. Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer's and Parkinson's diseases: rostrocaudal distribution. Brain 1999; 122: 1449-1468.
  • 32 Hwang WJ, Yao WJ, Wey SP. et al. Downregulation of striatal dopamine D2 receptors in advanced Parkinson's disease contributes to the development of motor fluctuation. Eur Neurol 2002; 47: 113-117.
  • 33 Antonini A, Schwarz J, Oertel WH. et al. Long-term changes of striatal dopamine D2 receptors in patients with Parkinson's disease: a study with positron emission tomography and [nC]raclopride. Mov Disord 1997; 12: 33-38.
  • 34 Brucke T, Wenger S, Asenbaum S. et al. Dopamine D2 receptor imaging and measurement with SPECT. Adv Neurol 1993; 60: 494-500.
  • 35 Brucke T, Roth J, Podreka I. et al. Striatal dopamine D2-receptor blockade by typical and atypical neuroleptics. Lancet 1992; 339: 497.