Vet Comp Orthop Traumatol 2012; 25(04): 263-272
DOI: 10.3415/VCOT-11-05-0070
Review Article
Schattauer GmbH

A review of the treatment methods for cartilage defects

R. M. Thiede
1   Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
,
Y. Lu
1   Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
,
M. D. Markel
1   Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
› Author Affiliations
Further Information

Publication History

Received 05 May 2011

Accepted 12 January 2012

Publication Date:
19 December 2017 (online)

Summary

The purpose of this article is to provide a broad review of the literature related to the treatment of cartilage defects and degenerated cartilage in animals with some inferences to the treatment in humans. Methods range from the insertion of osteochondral tissue or cells to the application of radio frequency or insertion of scaffolds and growth factors alone or in combination. Debridement, microfracture, radio frequency, and chondrocyte implantation are all methods normally utilized when treating smaller articular cartilage defects. Scaffolds and mosaicplasty are examples of methods to treat larger defects. This review will cover all major treatment methods currently used to treat articular cartilage defects.

 
  • References

  • 1 Ochi M, Uchio Y, Tobita M. et al. Current concepts in tissue engineering technique for repair of cartilage defect. Artif Organs 2001; 25: 172-179.
  • 2 Chiang H, Jiang CC. Repair of articular cartilage defects: review and perspectives. J Formos Med Assoc 2009; 108: 87-101.
  • 3 Good CR, Shindle MK, Kelly BT. et al. Glenohumeral chondrolysis after shoulder arthroscopy with thermal capsulorrhaphy. Arthroscopy 2007; 23: 797e.1-5.
  • 4 Levine WN, Clark Jr. AM, D'Alessandro DF. et al. Chondrolysis following arthroscopic thermal capsulorrhaphy to treat shoulder instability. A report of two cases. J Bone Joint Surg Am 2005; 87: 616-621.
  • 5 Petty DH, Jazrawi LM, Estrada LS. et al. Glenohumeral chondrolysis after shoulder arthroscopy: case reports and review of the literature. Am J Sports Med 2004; 32: 509-515.
  • 6 Scheffel PT, Clinton J, Lynch JR. et al. Glenohumeral chondrolysis: a systematic review of 100 cases from the English language literature. J Shoulder Elbow Surg 2010; 19: 944-949.
  • 7 Burks RT, Greis PE, Arnoczky SP. et al. The use of a single osteochondral autograft plug in the treatment of a large osteochondral lesion in the femoral condyle: an experimental study in sheep. Am J Sports Med 2006; 34: 247-255.
  • 8 Custers RJ, Saris DB, Dhert WJ. et al. Articular cartilage degeneration following the treatment of focal cartilage defects with ceramic metal implants and compared with microfracture. J Bone Joint Surg Am 2009; 91: 900-910.
  • 9 Frisbie DD, Oxford JT, Southwood L. et al. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res 2003; 407: 215-227.
  • 10 Lane JG, Tontz Jr. WL, Ball ST. et al. A morphologic, biochemical, and biomechanical assessment of short-term effects of osteochondral autograft plug transfer in an animal model. Arthroscopy 2001; 17: 856-863.
  • 11 Nam EK, Makhsous M, Koh J. et al. Biomechanical and histological evaluation of osteochondral transplantation in a rabbit model. Am J Sports Med 2004; 32: 308-316.
  • 12 Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; 391 Suppl S362-S369.
  • 13 Frisbie DD, Trotter GW, Powers BE. et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 1999; 28: 242-255.
  • 14 Fortier LA, Nixon AJ, Lust G. Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1. Am J Vet Res 2002; 63: 301-305.
  • 15 Goodrich LR, Hidaka C, Robbins PD. et al. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br 2007; 89: 672-685.
  • 16 Nixon AJ, Fortier LA, Williams J. et al. Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res 1999; 17: 475-487.
  • 17 Wayne JS, McDowell CL, Shields KJ. et al. In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng 2005; 11: 953-963.
  • 18 Zhou G, Liu W, Cui L. et al. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng 2006; 12: 3209-3221.
  • 19 Strauss EJ, Goodrich LR, Chen CT. et al. Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model. Am J Sports Med 2005; 33: 1647-1653.
  • 20 Jackson DW, Scheer MJ, Simon TM. Cartilage substitutes: overview of basic science and treatment options. J Am Acad Orthop Surg 2001; 9: 37-52.
  • 21 Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater 2005; 9: 23-32.
  • 22 Fu X, Lin L, Zhang J. et al. Assessment of the efficacy of joint lavage in rabbits with osteoarthritis of the knee. J Orthop Res 2009; 27: 91-96.
  • 23 Chang RW, Falconer J, Stulberg SD. et al. A randomized, controlled trial of arthroscopic surgery versus closed-needle joint lavage for patients with osteoarthritis of the knee. Arthritis Rheum 1993; 36: 289-296.
  • 24 Edelson R, Burks RT, Bloebaum RD. Short-term effects of knee washout for osteoarthritis. Am J Sports Med 1995; 23: 345-349.
  • 25 Tanaka N, Sakahashi H, Hirose K. et al. Volume of a wash and the other conditions for maximum therapeutic effect of arthroscopic lavage in rheumatoid knees. Clin Rheumatol 2006; 25: 65-69.
  • 26 van Oosterhout M, Sont JK, van Laar JM. Superior effect of arthroscopic lavage compared with needle aspiration in the treatment of inflammatory arthritis of the knee. Rheumatology (Oxford) 2003; 42: 102-107.
  • 27 Reichenbach S, Rutjes AW, Nuesch E. et al. Joint lavage for osteoarthritis of the knee. Cochrane Database Syst Rev. 2010: CD007320.
  • 28 Bradley JD, Heilman DK, Katz BP. et al. Tidal irrigation as treatment for knee osteoarthritis: a sham-controlled, randomized, double-blinded evaluation. Arthritis Rheum 2002; 46: 100-108.
  • 29 Dawes PT, Kirlew C, Haslock I. Saline washout for knee osteoarthritis: results of a controlled study. Clin Rheumatol 1987; 6: 61-63.
  • 30 Ike RW, Arnold WJ, Rothschild EW. et al. Tidal irrigation versus conservative medical management in patients with osteoarthritis of the knee: a prospective randomized study. Tidal Irrigation Cooperating Group. J Rheumatol 1992; 19: 772-779.
  • 31 Kalunian KC, Moreland LW, Klashman DJ. et al. Visually-guided irrigation in patients with early knee osteoarthritis: a multicenter randomized controlled trial. Osteoarthritis Cartilage 2000; 8: 412-418.
  • 32 Moseley JB, O'Malley K, Petersen NJ. et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 2002; 347: 81-88.
  • 33 Moseley Jr. JB, Wray NP, Kuykendall D. et al. Arthroscopic treatment of osteoarthritis of the knee: a prospective, randomized, placebo-controlled trial. Results of a pilot study. Am J Sports Med 1996; 24: 28-34.
  • 34 Ravaud P, Moulinier L, Giraudeau B. et al. Effects of joint lavage and steroid injection in patients with osteoarthritis of the knee: results of a multicenter, randomized, controlled trial. Arthritis Rheum 1999; 42: 475-482.
  • 35 Moseley B, Wray N, Kuykendal D. et al. Arthroscopic treatment of osteoarthritis of the knee: a prospective, randomized, placebo controlled trial. Results of a pilot study. Am J sports Med 1996; 24: 28-34.
  • 36 Voloshin I, Morse KR, Allred CD. et al. Arthroscopic evaluation of radiofrequency chondroplasty of the knee. Am J Sports Med 2007; 35: 1702-1707.
  • 37 Kaplan L, Uribe JW, Sasken H. et al. The acute effects of radiofrequency energy in articular cartilage: an in vitro study. Arthroscopy 2000; 16: 2-5.
  • 38 Lu Y, Hayashi K, Hecht P. et al. The effect of monopolar radiofrequency energy on partial-thickness defects of articular cartilage. Arthroscopy 2000; 16: 527-536.
  • 39 Turner AS, Tippett JW, Powers BE. et al. Radiofrequency (Electrosurgical) ablation of articular cartilage. a study in sheep. Arthroscopy 1998; 14: 585-591.
  • 40 Organ LW. Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol 1976; 39: 69-76.
  • 41 Lu Y, Markel MD. Radiofrequency energy for cartilage treatment. In: Cole BJ, Malek MM. editors. Articular Cartilage Lesions. New York: Springer Verlag New York, Inc.; 2006: 47-56.
  • 42 Edwards RB, Lu Y, Kalscheur VL. et al. Thermal chondroplasty of chondromalacic human cartilage: an ex vivo comparison of bipolar and monopolar radiofrequency devices. Am J Sports Med 2002; 30: 90-97.
  • 43 Lu Y, Edwards RB, Kalscheur VL. et al. Effect of bipolar radiofrequency energy on human articular cartilage: comparison of confocal laser microscopy and light microscopy. Arthroscopy 2001; 17: 117-123.
  • 44 Lu Y, Edwards RB III, Nho S. et al. Thermal chondroplasty with bipolar and monopolar radiofrequency energy: Effect of treatment time on chondrocyte death and surface contouring. Arthroscopy 2002; 18: 779-788.
  • 45 Lu Y, Edwards RB, Cole BJ. et al. Thermal chondroplasty with radiofrequency energy: An in vitro comparison of bipolar and monopolar radiofrequency devices. Am J Sports Med 2001; 29: 42-49.
  • 46 Edwards RB, Lu Y, Cole BJ. et al. Comparison of radiofrequency treatment and mechanical debridement of fibrillated cartilage in an equine model. Vet Comp Orthop Traumatol 2008; 21: 41-48.
  • 47 Spahn G, Klinger HM, Muckley T. et al. Four-year results from a randomized controlled study of knee chondroplasty with concomitant medial meniscectomy: mechanical debridement versus radiofrequency chondroplasty. Arthroscopy 2010; 26: S73-S80.
  • 48 Caffey S, McPherson E, Moore B. et al. Effects of radiofrequency energy on human articular cartilage: an analysis of 5 systems. Am J Sports Med 2005; 33: 1035-1039.
  • 49 Ganguly K, McRury ID, Goodwin PM. et al. Histopomorphic evaluation of radiofrequency mediated debridement chondroplasty. Open Orthop J 2010; 4: 211-220.
  • 50 Sledge SL. Microfracture techniques in the treatment of osteochondral injuries. Clin Sports Med 2001; 20: 365-377.
  • 51 Frisbie DD, Morisset S, Ho CP. et al. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 2006; 34: 1824-1831.
  • 52 Morisset S, Frisbie DD, Robbins PD. et al. IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin Orthop Relat Res 2007; 462: 221-228.
  • 53 Bodo G, Hangody L, Modis L. et al. Autologous osteochondral grafting (mosaic arthroplasty) for treatment of subchondral cystic lesions in the equine stifle and fetlock joints. Vet Surg 2004; 33: 588-596.
  • 54 Gulotta LV, Rudzki JR, Kovacevic D. et al. Chondrocyte death and cartilage degradation after autologous osteochondral transplantation surgery in a rabbit model. Am J Sports Med 2009; 37: 1324-1333.
  • 55 Lane JG, Massie JB, Ball ST. et al. Follow-up of osteochondral plug transfers in a goat model: a 6-month study. Am J Sports Med 2004; 32: 1440-1450.
  • 56 Palierne S, Bilmont A, Raymond-Letron I. et al. A case of stifle osteochondrosis treated by osteochondral autogenous grafting. One month morphological follow-up. Vet Comp Orthop Traumatol 2010; 23: 190-195.
  • 57 Hurtig M, Pearce S, Warren S. et al. Arthroscopic mosaic arthroplasty in the equine third carpal bone. Vet Surg 2001; 30: 228-239.
  • 58 Whiteside RA, Bryant JT, Jakob RP. et al. Short-term load bearing capacity of osteochondral autografts implanted by the mosaicplasty technique: an in vitro porcine model. J Biomech 2003; 36: 1203-1208.
  • 59 Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 2003; 85-A Suppl 2 25-32.
  • 60 Hangody L, Kish G, Modis L. et al. Mosaicplasty for the treatment of osteochondritis dissecans of the talus: two to seven year results in 36 patients. Foot Ankle Int 2001; 22: 552-558.
  • 61 Ragetly GR, Griffon DJ. The rationale behind novel bone grafting techniques in small animals. Vet Comp Orthop Traumatol 2011; 24: 1-8.
  • 62 Pearce SG, Hurtig MB, Boure LP. et al. Cylindrical press-fit osteochondral allografts for resurfacing the equine metatarsophalangeal joint. Vet Surg 2003; 32: 220-230.
  • 63 Waselau AC, Nadler D, Muller JM. et al. The effect of cartilage and bone density of mushroom-shaped, photooxidized, osteochondral transplants: an experimental study on graft performance in sheep using transplants originating from different species. BMC Musculoskelet Disord. 2005 6. 60.
  • 64 Boopalan PR, Sathishkumar S, Kumar S. et al. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation. Int Orthop 2006; 30: 357-361.
  • 65 Mainil-Varlet P, Rieser F, Grogan S. et al. Articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study. Osteoarthritis Cartilage. 2001; 9 Suppl A S6-15.
  • 66 Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med 1999; 18: 67-75.
  • 67 Gross AE, Kim W, Las HF. et al. Fresh osteochondral allografts for posttraumatic knee defects: long-term followup. Clin Orthop Relat Res 2008; 466: 1863-1870.
  • 68 Ramallal M, Maneiro E, Lopez E. et al. Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen 2004; 12: 337-345.
  • 69 von Rechenberg B, Akens MK, Nadler D. et al. Mosaicplasty with photooxidized, mushroom shaped, bovine, osteochondral xenografts in experimental sheep. Vet Comp Orthop Traumatol 2006; 19: 147-156.
  • 70 Yagihashi K, Miyazawa K, Togari K. et al. Demineralized dentin matrix acts as a scaffold for repair of articular cartilage defects. Calcif Tissue Int 2009; 84: 210-220.
  • 71 van Susante JL, Buma P, Schuman L. et al. Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 1999; 20: 1167-1175.
  • 72 Pei M, Yan Z, Shoukry M. et al. Failure of xenoimplantation using porcine synovium-derived stem cell-based cartilage tissue constructs for the repair of rabbit osteochondral defects. J Orthop Res 2010; 28: 1064-1070.
  • 73 Brittberg M, Lindahl A, Nilsson A. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-895.
  • 74 Litzke LE, Wagner E, Baumgaertner W. et al. Repair of extensive articular cartilage defects in horses by autologous chondrocyte transplantation. Ann Biomed Eng 2004; 32: 57-69.
  • 75 Trzeciak T, Kruczynski J, Jaroszewski J. et al. Evaluation of cartilage reconstruction by means of autologous chondrocyte versus periosteal graft transplantation: an animal study. Transplant Proc 2006; 38: 305-311.
  • 76 Dell'Accio F, Vanlauwe J, Bellemans J. et al. Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res 2003; 21: 123-131.
  • 77 Min BH, Woo JI, Kim WH. et al. The fate of implanted autologous chondrocytes in regenerated articular cartilage. Proc Inst Mech Eng H 2007; 221: 461-465.
  • 78 Kamarul T, Selvaratnam L, Masjuddin T. et al. Autologous chondrocyte transplantation in the repair of full-thickness focal cartilage damage in rabbits. J Orthop Surg (Hong Kong) 2008; 16: 230-236.
  • 79 Breinan HA, Minas T, Hsu HP. et al. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 1997; 79: 1439-1451.
  • 80 Peterson L, Minas T, Brittberg M. et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2000; 212-234.
  • 81 Peterson L, Vasiliadis HS, Brittberg M. et al. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010; 38: 1117-1124.
  • 82 Ossendorf C, Kaps C, Kreuz PC. et al. Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. Arthritis Res Ther. 2007 9. R41.
  • 83 Lee CR, Grodzinsky AJ, Hsu HP. et al. Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J Orthop Res 2003; 21: 272-281.
  • 84 Chiang H, Kuo TF, Tsai CC. et al. Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. J Orthop Res 2005; 23: 584-593.
  • 85 De Franceschi L, Grigolo B, Roseti L. et al. Transplantation of chondrocytes seeded on collagen-based scaffold in cartilage defects in rabbits. J Biomed Mater Res A 2005; 75: 612-622.
  • 86 Yanai T, Ishii T, Chang F. et al. Repair of large full-thickness articular cartilage defects in the rabbit: the effects of joint distraction and autologous bone-marrow-derived mesenchymal cell transplantation. J Bone Joint Surg Br 2005; 87: 721-729.
  • 87 Willers C, Chen J, Wood D. et al. Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng 2005; 11: 1065-1076.
  • 88 Jones CW, Willers C, Keogh A. et al. Matrix-induced autologous chondrocyte implantation in sheep: objective assessments including confocal arthroscopy. J Orthop Res 2008; 26: 292-303.
  • 89 Zheng MH, Willers C, Kirilak L. et al. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng 2007; 13: 737-746.
  • 90 Crawford DC, Heveran CM, Cannon Jr. WD. et al. An autologous cartilage tissue implant NeoCart for treatment of grade III chondral injury to the distal femur: prospective clinical safety trial at 2 years. Am J Sports Med 2009; 37: 1334-1343.
  • 91 Dounchis JS, Bae WC, Chen AC. et al. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts. Clin Orthop Relat Res 2000; 248-264.
  • 92 Safran MR, Kim H, Zaffagnini S. The use of scaffolds in the management of articular cartilage injury. J Am Acad Orthop Surg 2008; 16: 306-311.
  • 93 Barnewitz D, Endres M, Kruger I. et al. Treatment of articular cartilage defects in horses with polymer-based cartilage tissue engineering grafts. Biomaterials 2006; 27: 2882-2889.
  • 94 Liu Y, Chen F, Liu W. et al. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng 2002; 8: 709-721.
  • 95 Zhou XZ, Leung VY, Dong QR. et al. Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold. Int J Artif Organs 2008; 31: 480-489.
  • 96 Knecht S, Erggelet C, Endres M. et al. Mechanical testing of fixation techniques for scaffold-based tissue-engineered grafts. J Biomed Mater Res B Appl Biomater 2007; 83: 50-57.
  • 97 Minenna L, Herrero F, Sanz M. et al. Adjunctive effect of a polylactide/polyglycolide copolymer in the treatment of deep periodontal intra-osseous defects: a randomized clinical trial. J Clin Periodontol 2005; 32: 456-461.
  • 98 Dounchis JS, Coutts RD, Amiel D. Cartilage repair with autogenic perichondrium cell/polylactic acid grafts: a two-year study in rabbits. J Orthop Res 2000; 18: 512-515.
  • 99 Jiang CC, Chiang H, Liao CJ. et al. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 2007; 25: 1277-1290.
  • 100 Guo X, Wang C, Zhang Y. et al. Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 2004; 10: 1818-1829.
  • 101 Schaefer D, Martin I, Jundt G. et al. Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 2002; 46: 2524-2534.
  • 102 Tanaka T, Komaki H, Chazono M. et al. Use of a biphasic graft constructed with chondrocytes overlying a beta-tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng 2005; 11: 331-339.
  • 103 Shao XX, Hutmacher DW, Ho ST. et al. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 2006; 27: 1071-1080.
  • 104 Song HX, Li FB, Shen HL. et al. Repairing articular cartilage defects with tissue-engineering cartilage in rabbits. Chin J Traumatol 2006; 9: 266-271.
  • 105 Ito Y, Ochi M, Adachi N. et al. Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthroscopy 2005; 21: 1155-1163.
  • 106 Ito Y, Adachi N, Nakamae A. et al. Transplantation of tissue-engineered osteochondral plug using cultured chondrocytes and interconnected porous calcium hydroxyapatite ceramic cylindrical plugs to treat osteochondral defects in a rabbit model. Artif Organs 2008; 32: 36-44.
  • 107 Hidaka C, Goodrich LR, Chen CT. et al. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res 2003; 21: 573-583.
  • 108 Oshin AO, Stewart MC. The role of bone morphogenetic proteins in articular cartilage development, homeostasis and repair. Vet Comp Orthop Traumatol 2007; 20: 151-158.
  • 109 Siebert CH, Miltner O, Weber M. et al. Healing of osteochondral grafts in an ovine model under the influence of bFGF. Arthroscopy 2003; 19: 182-187.