CC BY 4.0 · AIMS Genet 2018; 05(02): 113-123
DOI: 10.3934/genet.2018.2.113
Research Article

Preferable location of chromosomes 1, 29, and X in bovine spermatozoa

Vadim Chagin
2   Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
,
Andrei Zalensky
1   The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Virginia, USA
,
Igor Nazarov
1   The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Virginia, USA
2   Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
,
Olga Mudrak
1   The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Virginia, USA
2   Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
› Institutsangaben

Abstract

Chromosome positioning in sperm nucleus may have a functional significance by influencing the sequence of post-fertilization events. In this study we present data on preferential locations of chromosomes 1, 29 and X in Bos taurus spermatozoa. Here we demonstrate that the position of X chromosome in the sperm nucleus is more restricted as compared to the position of chromosome 1, which is about of the same size. Our data support the concept of the functional significance of genome architecture in male germline cells.



Publikationsverlauf

Eingereicht: 30. November 2017

Angenommen: 07. März 2018

Artikel online veröffentlicht:
10. Mai 2021

© 2018. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Greaves I, Svartman M, Wakefield M. et al. Chromosomal painting detects non-random chromosome arrangement in dasyurid marsupial sperm. Chromosome Res 2001; 9: 251-259
  • 2 Greaves I, Rens W, Ferguson-Smith M. et al. Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance. Chromosome Res 2003; 11: 503-512
  • 3 Zalensky A, Zalenskaya I. Organization of chromosomes in spermatozoa: an additional layer of epigenetic information. Biochem Soc Trans 2007; 35: 609-611
  • 4 Finch KA, Fonseka KG, Abogrein A. et al. Nuclear organization in human sperm: Preliminary evidence for altered sex chromosome centromere position in infertile males. Hum Reprod 2008; 23: 1263-1270
  • 5 Olszewska M, Wiland E, Kurpisz M. Positioning of chromosome 15, 18, X and Y centromeres in sperm cells of fertile individuals and infertile patients with increased level of aneuploidy. Chromosome Res 2008; 16: 875-890
  • 6 Ioannou D, Griffin DK. Male fertility, chromosome abnormalities, and nuclear organization. Cytogenet Genome Res 2011; 133: 269-279
  • 7 Alladin N, Moskovtsev SI, Russell H. et al. The three-dimensional image fnalysis of the chromocenter in motile and immotile human sperm. Syst Biol Reprod Med 2013; 59: 146-152
  • 8 Wiland E, Fraczek M, Olszewska M. et al. Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage. Sci Rep 2016; 6: 31614
  • 9 Cremer T, Cremer M. Chromosome Territories. Cold Spring Harb Perspect Biol 2010; 2: a003889
  • 10 Zalenskaya I, Zalensky A. Non-random positioning of chromosomes in human sperm nuclei. Chromosome Res 2004; 12: 163-173
  • 11 Mudrak O, Tomilin N, Zalensky A. Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci 2005; 118: 4541-4550
  • 12 Manvelyan M, Hunstig F, Bhatt S. et al. Chromosome distribution in human sperm—a 3D multicolor banding-study. Mol Cytogenet 2008; 1: 25
  • 13 Wiland E, Zegaŭo M, Kurpisz M. Interindividual differences and alterations in the topology of chromosomes in human sperm nuclei of fertile donors and carriers of reciprocal translocations. Chromosome Res 2008; 16: 291-305
  • 14 Mudrak O, Nazarov I, Jones E. et al. Positioning of chromosomes in human spermatozoa is determined by ordered centromere arrangement. PLoS ONE 2012; 7: e52944
  • 15 Millan N, Lau P, Hann M. et al. Hierarchical radial and polar organisation of chromosomes in human sperm. Chromosome Res 2012; 20: 875-887
  • 16 Ioannou D, Tempest H. Does genome organization matter in spermatozoa? A refined hypothesis to awaken the silent vessel. Syst Biol Reprod Med 2018; 2018: 1-17
  • 17 Tsend-Ayush E, Dodge N, Mohr J. et al. Higher-order genome organization in platypus and chicken sperm and repositioning of sex chromosomes during mammalian evolution. Chromosoma 2009; 118: 53-69
  • 18 Meyer-Ficca M, Muller-Navia J, Scherthan H. Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J Cell Sci 1998; 111: 1363-1370
  • 19 Foster H, Abeydeera L, Griffin D. et al. Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 2005; 118: 1811-1820
  • 20 Zalenskaya IA, Zalensky AO. Telomeres in mammalian male germline cells. Int Rev Cytol 2002; 218: 37-67
  • 21 Handel M. The XY body: a specialized meiotic chromatin domain. Exp Cell Res 2004; 296: 57-63
  • 22 Tanemura K, Ogura A, Cheong C. et al. Dynamic rearrangement of telomeres during spermatogenesis in mice. Dev Biol 2005; 281: 196-207
  • 23 Namekawa S, Park P, Zhang LF. et al. Postmeiotic sex chromatin in the male germline of mice. Curr Biol 2006; 16: 660-667
  • 24 Kobayashi J, Kohsaka T, Sasada H. et al. Fluorescence in situ hybridization with Y chromosome-specific probe in decondensed bovine spermatozoa. Theriogenology 1999; 52: 1043-1054
  • 25 Habermann F, Winter A, Olsaker I. et al. Validation of sperm sexing in the cattle (Bos taurus) by dual colour fluorescence in situ hybridization. J Anim Breed Genet 2005; 122: 22-27
  • 26 Sbracia M, Baldi M, Cao D. et al. Preferential location of sex chromosomes, their aneuploidy in human sperm, and their role in determining sex chromosome aneuploidy in embryos after ICSI. Hum Reprod 2002; 17: 320-324
  • 27 Sin HS, Ichijima Y, Koh E. et al. Human postmeiotic sex chromatin and its impact on sex chromosome evolution. Genome Res 2012; 22: 827-836
  • 28 Powell D, Cran DG, Jennings C. et al. Spatial organization of repetitive DNA sequences in the bovine sperm nucleus. J Cell Sci 1990; 97: 185-191