Subscribe to RSS

DOI: 10.3934/genet.2018.2.124
The role of long non-coding RNAs in cardiac development and disease
Authors
Abstract
Cells display a set of RNA molecules at one time point, reflecting thus the cellular transcriptional steady state, configuring therefore its transcriptome. It is basically composed of two different classes of RNA molecules; protein-coding RNAs (cRNAs) and protein non-coding RNAs (ncRNAs). Sequencing of the human genome and subsequently the ENCODE project identified that more than 80% of the genome is transcribed in some type of RNA. Importantly, only 3% of these transcripts correspond to protein-coding RNAs, pointing that ncRNAs are as important or even more as cRNAs. ncRNAs have pivotal roles in development, differentiation and disease. Non-coding RNAs can be classified into two distinct classes according to their length; i.e., small (<200 nt) and long (>200 nt) noncoding RNAs. The structure, biogenesis and functional roles of small non-coding RNA have been widely studied, particularly for microRNAs (miRNAs). In contrast to microRNAs, our current understanding of long non-coding RNAs (lncRNAs) is limited. In this manuscript, we provide state-of-the art review of the functional roles of long non-coding RNAs during cardiac development as well as an overview of the emerging role of these ncRNAs in distinct cardiac diseases.
Publication History
Received: 30 October 2017
Accepted: 15 March 2018
Article published online:
10 May 2021
© 2018. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Carninci P, Kasukawa T, Katayama S. et al. The transcriptional landscape of the mammalian genome. Science 2005; 309: 1559-1563
- 2 Harrow J, Frankish A, Gonzalez JM. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22: 1760-1774
- 3 Esteller M. Non-coding RNAs in human disease. Nature Rev Gene 2011; 12: 861-874
- 4 Beermann J, Piccoli MT, Viereck J. et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 2016; 96: 1297-1325
- 5 Barwari T, Joshi A, Mayr M. MicroRNAs in Cardiovascular Disease. J Am College Cardiol 2016; 68: 2577-2584
- 6 Liu N, Olson EN. MicroRNA regulatory networks in cardiovascular development. Dev Cell 2010; 18: 510-525
- 7 Derrien T, Johnson R, Bussotti G. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1775-1789
- 8 Fang S, Zhang L, Guo J. et al. NONCODEv5: a comprehensive annotation database for long non coding RNAs. Nucleic Acids Res 2017; 46: D308-D314
- 9 Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 2016; 73: 2491-2509
- 10 Rosa A, Ballarino M. Long noncoding RNA regulation of pluripotency. Stem Cells Int 2015; 2016: 1-9
- 11 Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends in Cell Biol 2011; 21: 354-361
- 12 Dieci G, Fiorino G, Castelnuovo M. et al. The expanding RNA polymerase III transcriptome. Trends in Genet 2007; 23: 614-622
- 13 Rackham O, Shearwood AMJ, Mercer TR. et al. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 2011; 17: 2085-2093
- 14 Pauli A, Norris ML, Valen E. et al. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 2014; 343: 1248636
- 15 Pauli A, Valen E, Schier AF. Identifying (non-) coding RNAs and small peptides: Challenges and opportunities. BioEssays 2015; 37: 103-112
- 16 Nelson BR, Makarewich CA, Anderson DM. et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 2016; 351: 271-275
- 17 Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 2016; 17: 756-770
- 18 Gloss BS, Dinger ME. The specificity of long noncoding RNA expression. Biochim Biophysi Acta 2016; 1859: 16-22
- 19 BÄr C, Chatterjee S, Thum T. Long Noncoding RNAs in Cardiovascular Pathology, Diagnosis, and Therapy. Circulation 2016; 134: 1484-1499
- 20 Chen LL. Linking Long Noncoding RNA Localization and Function. Trends in Biochem Sci 2016; 41: 761-772
- 21 Klattenhoff CA, Scheuermann JC, Surface LE. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013; 152: 570-583
- 22 Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154: 26-46
- 23 Ounzain S, Pedrazzini T. The promise of enhancer-associated long noncoding RNAs in cardiac regeneration. Trends Cardiovasc Med 2015; 25: 592-602
- 24 Ounzain S, Burdet F, Ibberson M. et al. Discovery and functional characterization of cardiovascular long noncoding RNAs. J Mol Cell Cardiol 2015; 89: 17-26
- 25 Memczak S, Jens M, Elefsinioti A. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495: 333-338
- 26 Wang K, Long B, Liu F. et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Euro Heart J 2016; 37: 2602-2611
- 27 Liu L, An X, Li Z. et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 2016; 111: 56-65
- 28 Hasegawa Y, Brockdorff N, Kawano S. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 2010; 19: 469-476
- 29 Gupta RA, Shah N, Wang KC. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071-1076
- 30 Grote P, Wittler L, Hendrix D. et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 2013; 24: 206-214
- 31 Tsai MC, Manor O, Wan Y. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689-693
- 32 Aguilo F, Zhou MM, Walsh MJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res 2011; 71: 5365-5369
- 33 Mousavi K, Zare H, Dell'Orso S. et al. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 2013; 51: 606-617
- 34 Welsh IC, Kwak H, Chen FL. et al. Chromatin architecture of the Pitx2 locus requires CTCF-and Pitx2-dependent asymmetry that mirrors embryonic gut laterality. Cell Rep 2015; 13: 337-349
- 35 Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 2010; 38: 5797-5806
- 36 Han P, Li W, Lin CH. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 2014; 514: 102-106
- 37 Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 2013; 425: 3723-3730
- 38 Tripathi V, Ellis JD, Shen Z. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39: 925-938
- 39 Yin QF, Yang L, Zhang Y. et al. Long Noncoding RNAs with snoRNA Ends. Mol Cell 2012; 48: 219-230
- 40 Kim YK, Furic L, Desgroseillers L. et al. Mammalian Staufen1 recruits Upf1 to specific mRNA 3″UTRs so as to elicit mRNA decay. Cell 2005; 120: 195-208
- 41 Kim YK, Furic L, Parisien M. et al. Staufen1 regulates diverse classes of mammalian transcripts. EMBO 2007; 26: 2670-2681
- 42 Faghihi MA, Modarresi F, Khalil AM. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of Β-secretase expression. Nat Med 2008; 14: 723
- 43 Faghihi MA, Zhang M, Huang J. et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 2010; 11: R56
- 44 Yoon JH, Abdelmohsen K, Srikantan S. et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell 2012; 47: 648-655
- 45 Wang H, Iacoangeli A, Lin D. et al. Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 2005; 171: 811-821
- 46 Carrieri C, Cimatti L, Biagioli M. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 2012; 491: 454-457
- 47 Cesana M, Cacchiarelli D, Legnini I. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147: 358-369
- 48 Keniry A, Oxley D, Monnier P. et al. The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r. Nat Cell Biol 2012; 14: 659
- 49 Garry DJ, Olson EN. A common progenitor at the heart of development. Cell 2006; 127: 1101-1104
- 50 Wagner M, Siddiqui MAQ. Signal transduction in early heart development (I): cardiogenic induction and heart tube formation. Exp Biol Med 2007; 232: 852-865
- 51 Kelly RG, Buckingham ME, Moorman AF. Heart fields and cardiac morphogenesis. Cold Spring Harb Perspect Med 2014; 4: a015750
- 52 Christoffels VM, Habets PE, Franco D. et al. Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 2000; 223: 266-278
- 53 Schonrock N, Harvey RP, Mattick JS. Long noncoding RNAs in cardiac development and pathophysiology. Circ Res 2012; 111: 1349-1362
- 54 Meganathan K, Sotiriadou I, Natarajan K. et al. Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol 2015; 183: 117-128
- 55 Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008; 9: 219-230
- 56 Katz MG, Fargnoli AS, Kendle AP. et al. The role of microRNAs in cardiac development and regenerative capacity. Am J Physiol Heart Circ Physiol 2016; 310: H528-H541
- 57 Li H, Jiang L, Yu Z. et al. The Role of a Novel Long Noncoding RNA TUC40-in Cardiomyocyte Induction and Maturation in P19 Cells. Am J Med Sci 2017; 354: 608-616
- 58 Arnone B, Chen JY, Qin G. Characterization and analysis of long non-coding rna (lncRNA) in In Vitro-and Ex Vivo-derived cardiac progenitor cells. PloS One 2017; 12: e0180096
- 59 Liu J, Li Y, Lin B. et al. HBL1 Is a Human Long Noncoding RNA that Modulates Cardiomyocyte Development from Pluripotent Stem Cells by Counteracting MIR1. Dev Cell 2017; 42: 333-348
- 60 Ounzain S, Micheletti R, Beckmann T. et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 2014; 36: 353-368
- 61 Ounzain S, Pedrazzini T. Long non-coding RNAs in heart failure: a promising future with much to learn. Annals Trans Med 2016; 4: 298
- 62 Ounzain S, Micheletti R, Arnan C. et al. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol 2015; 89: 98-112
- 63 Boucher JM, Peterson SM, Urs S. et al. The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J Biol Chem 2011; 286: 28312-28321
- 64 Cordes KR, Sheehy NT, White MP. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460: 705-710
- 65 Mathiyalagan P, Keating ST, Du XJ. et al. Chromatin modifications remodel cardiac gene expression. Cardiovasc Res 2014; 103: 7-16
- 66 Xue Z, Hennelly S, Doyle B. et al. A G-rich motif in the lncRNA braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol Cell 2016; 64: 37-50
- 67 Mahlapuu M, Ormestad M, Enerback S. et al. The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 2001; 128: 155-166
- 68 Grote P, Herrmann BG. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol 2013; 10: 1579-1585
- 69 Kurian L, Aguirre A, Sancho-Martinez I. et al. Identification of novel long non-coding RNAs underlying vertebrate cardiovascular development. Circulation 2015; 131: 1278-1290
- 70 Jiang W, Liu Y, Liu R. et al. The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Rep 2015; 11: 137-148
- 71 Yamagashi H, Olson EN, Srivastava D. The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest 2000; 105: 261-270
- 72 McFadden DG, CharitÉ J, Richardson JA. et al. A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development 2000; 127: 5331-5341
- 73 He A, Gu F, Hu Y. et al. Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat Commun 2014; 5: 4907
- 74 Anderson KM, Anderson DM, McAnally JR. et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 2016; 539: 433-436
- 75 Song G, Shen Y, Zhu J. et al. Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PloS One 2013; 8: e77492
- 76 Song G, Shen Y, Ruan Z. et al. LncRNA-uc. 167 influences cell proliferation, apoptosis and differentiation of P19 cells by regulating Mef2c. Gene 2016; 590: 97-108
- 77 Gudbjartsson DF, Arnar DO, Helgadottir A. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 2007; 448: 353-357
- 78 Ellinor PT, Lunetta KL, Albert CM. et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet 2012; 44: 670-675
- 79 Franco D, Christoffels VM, Campione M. Homeobox transcription factor Pitx2: The rise of an asymmetry gene in cardiogenesis and arrhythmogenesis. Trends Cardiovasc Med 2014; 24: 23-31
- 80 Gore-Panter SR, Hsu J, Barnard J. et al. PANCR, the PITX2 Adjacent noncoding RNA, is expressed in human left atria and regulates PITX2c expression. Circ Arrhythm Electrophysiol 2016; 9: e003197
- 81 Guo Y, Luo F, Liu Q. et al. Regulatory non-coding RNAs in acute myocardial infarction. J Cell Mol Med 2016; 21: 1013-1023
- 82 Vausort M, Wagner DR, Devaux Y. Long Noncoding RNAs in Patients With Acute Myocardial InfarctionNovelty and Significance. Circ Res 2014; 115: 668-677
- 83 Devaux Y, Creemers EE, Boon RA. et al. Circular RNAs in heart failure. Eur J Heart Fail 2017; 19: 701-709
- 84 Greco S, Zaccagnini G, Perfetti A. et al. Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med 2016; 14: 183
- 85 Schiano C, Costa V, Aprile M. et al. Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing. Cardiol J 2017; 24: 539-553
- 86 Micheletti R, Plaisance I, Abraham BJ. et al. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 2017; 9: eaai9118
- 87 Li Z, Wang X, Wang W. et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. J Mol Cell Cardiol 2017; 108: 73-85
- 88 Ruan Z, Sun X, Sheng H. et al. Long non-coding RNA expression profile in atrial fibrillation. Int J Clin Exp Pathol 2015; 8: 8402
- 89 Viereck J, Kumarswamy R, Foinquinos A. et al. Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 2016; 8: 326ra22-326ra22
- 90 Wang Z, Zhang XJ, Ji YX. et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 2016; 22: 1131-1139
- 91 Wang K, Liu F, Zhou LY. et al. The Long Noncoding RNA CHRF Regulates Cardiac Hypertrophy by Targeting miR-489 Novelty and Significance. Circ Res 2014; 114: 1377-1388
- 92 Zhu XH, Yuan YX, Rao SL. et al. Lncrna miat enhances cardiac hypertrophy partly through sponging mir-150. Eur Rev Med Pharmacol Sci 2016; 20: 3653
- 93 Piccoli MT, Gupta SK, Viereck J. et al. Inhibition of the Cardiac Fibroblast†Enriched lncRNA Meg3 Prevents Cardiac Fibrosis and Diastolic Dysfunction Novelty and Significance. Circ Res 2017; 121: 575-583
- 94 Tao H, Zhang JG, Qin RH. et al. LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. Toxicology 2017; 386: 11-18
- 95 Qu X, Du Y, Shu Y. et al. MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 2017; 7: 42657
- 96 Huang ZW, Tian LH, Yang B. et al. Long noncoding RNA H19 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-455 in cardiac fibrosis. DNA Cell Biol 2017; 36: 759-766
