CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2014; 24(01): 80-83
DOI: 10.4103/0971-3026.130709
Interventional Radiology

Utility of C-arm CT in overcoming challenges in patients undergoing Transarterial chemoembolization for hepatocellular carcinoma

Chinmay Kulkarni
Department of Radiology, Amrita Institute of Medical Sciences and Research Center, Amrita Lane, Elamakkara P.O. Cochin, Kerala, India
,
P K Sreekumar
Department of Radiology, Amrita Institute of Medical Sciences and Research Center, Amrita Lane, Elamakkara P.O. Cochin, Kerala, India
,
Nirmal Kumar Prabhu
Department of Radiology, Amrita Institute of Medical Sciences and Research Center, Amrita Lane, Elamakkara P.O. Cochin, Kerala, India
,
Rajesh R kannan
Department of Radiology, Amrita Institute of Medical Sciences and Research Center, Amrita Lane, Elamakkara P.O. Cochin, Kerala, India
,
Srikanth Moorthy
Department of Radiology, Amrita Institute of Medical Sciences and Research Center, Amrita Lane, Elamakkara P.O. Cochin, Kerala, India
› Author Affiliations

Abstract

Transarterial chemoembolization (TACE) is the well-known treatment for hepatocellular carcinoma. Multiple digital subtraction angiography (DSA) acquisitions in different projections are required to identify difficult arterial feeders. Moreover, the tell-tale tumor blush can be obscured by proximity to lung base, small size of lesion, and breathing artifacts. C-arm CT is a revolutionary advancement in the intervention radiology suite that allows acquisition of data which can be reformatted in multiple planes and volume rendered incorporating both soft tissue and vascular information like multidetector computed tomography (MDCT). These images acquired during the TACE procedure can provide critical inputs for achieving a safe and effective therapy. This case series aims to illustrate the utility of C-arm CT in solving specific problems encountered while performing TACE.



Publication History

Article published online:
02 August 2021

© 2014. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Lo CM, Ngan H, Tso WK, Liu CL, Lam CM, Poon RT, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002;35:1164-71.
  • 2 Llovet JM, Real MI, Montana X, Planas R, Coll S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable Hepatocellular carcinoma: A randomised controlled trial. Lancet 2002;359:1734-9.
  • 3 Wallace MJ. C-Arm Computed tomography for guiding hepatic vascular interventions. Tech Vasc Interv Radiol 2007;10:79-86.
  • 4 Schueler BA, Kallmes DF, Cloft HJ. 3D cerebral angiography: Radiation dose comparison with digital subtraction angiography. Am J Neuroradiol 2005;26:1898-901.
  • 5 Prestigiacomo CJ, Niimi Y, Setton A, Berenstein A. Three-dimensional rotational spinal angiography in the evaluation and treatment of vascular malformations. Am J Neuroradiol 2003;24:1429-35.
  • 6 Liapi E, Hong K, Georgiades CS, Geschwind JF. Three-dimensional rotational angiography: Introduction of an adjunctive tool for successful transarterial chemoembolization. J Vasc Interv Radiol 2005;16:1241-5.
  • 7 Hirota S, Nakao N, Yamamoto S, Kobayashi K, Maeda H, Ishikura R, et al. Cone-beam CT with flat-panel-detector digital angiography system: Early experience in abdominal interventional procedures. Cardiovasc Intervent Radiol 2006;29:1034-8.
  • 8 Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am 1984;1:612-9.
  • 9 Ning R, Chen B, Yu R, Conover D, Tang X, Ning Y. Flat panel detector based cone-beam volume CT angiography imaging: System evaluation. IEEE Trans Med Imaging 2000;19:949-63.
  • 10 Meyer BC, Frericks BB, Albrecht T, Wolf KJ, Wacker FK. Contrast-enhanced abdominal angiographic CT for intra-abdominal tumor embolization: A new tool for vessel and soft tissue visualization. Cardiovasc Intervent Radiol 2007;30:743-9.
  • 11 Wallace MJ, Murthy R, Kamat P, Gupta S, Hicks ME, Ahrar K, et al. C-arm CT: Oncologic experience with hepatic arterial interventions. Chicago: Ragiological Society of North America; 2006.
  • 12 Liu DM, Salem R, Bui JT, Courtney A, Barakat O, Sergie Z, et al. Angiographic considerations in patients undergoing liver-directed therapy. J Vasc Interv Radiol 2005;16:911-35.
  • 13 Orth RC, Wallace MJ, Kuo MD; Technology Assessment Committee of the Society of Interventional Radiology. C-arm C. C-arm Cone-beam CT: General Principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 2008;19:814-20.
  • 14 Baba R, Konno Y, Ueda K, Ikeda S. Comparison of flat-panel detector and image intensifier detector for cone-beam CT. Comput Med Imaging Graph 2002;26:153-8.
  • 15 Gupta R, Grasruck M, Suess C, Bartling SH, Schmidt B, Stierstorfer K, et al. Ultra-high resolution flat-panel volume CT: Fundamental principles, design architecture, and system characterization. Eur Radiol 2006;16:1191-205.
  • 16 Siewerdsen JH, Jaffray DA. Cone beam computed tomography with a flat-panel imager: Magnitude and effects of x-ray scatter. Med Phys 2001;28:220-31.
  • 17 Siewerdsen JH, Moseley DJ, Bakhtiar B, Richard S, Jaffray DA. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors. Med Phys 2004;31:3506-20.
  • 18 Iwazawa J, Ohue S, Mitani T, Abe H, Hashimoto N, Hamuro M, et al. Identifying feeding rteries during TACE of Hepatic Tumors: Comparison of C-Arm CT and digital subtraction angiography. AJR Am J Roentgenol 2009;192:1057-63.