CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2014; 24(02): 107-116
DOI: 10.4103/0971-3026.134381
Molecular Imaging/PET/CT

Simultaneous PET/MRI: Impact on cancer management-A comprehensive review of cases

Amarnath Jena
Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospital, Sarita Vihar, Delhi-Mathura Road, New Delhi, India
,
Sangeeta Taneja
Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospital, Sarita Vihar, Delhi-Mathura Road, New Delhi, India
,
Abhishek Jha
Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospital, Sarita Vihar, Delhi-Mathura Road, New Delhi, India
› Author Affiliations

Abstract

The metabolic mapping of malignancy in whole body in a single examination by PET/CT has gained widespread acceptance where the CT provides an anatomical correlate for the PET. MRI offers advantage over CT in providing better anatomical information owing to its high soft tissue resolution especially in brain, liver, neck, pelvis and bone marrow. Simultaneous PET/MRI is a new multimodal imaging modality that is expected to improve the diagnostic performance of imaging wherein better anatomical and metabolic information can be acquired at the same time and space during a single examination time. Also, MR attributes like diffusion, perfusion and spectroscopy may further add to its diagnostic potential. In this article, we present our initial experience in illustrated cases done with simultaneous PET/MRI and outline its potential for several clinical applications in oncology.



Publication History

Article published online:
02 August 2021

© 2014. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, et al. Accuracy of whole-body dual modality fluorine-18-2-fluoro-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: Comparison with CT and PET. J Clin Oncol 2004;22:4357-68.
  • 2 Brendle CB, Schmidt H, Fleischer S, Braeuning UH, Pfannenberg CA, Schwenzer NF. Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: Alignment Quality. Radiology 2013;268:190-9.
  • 3 Rakheja R, DeMello L, Chandarana H, Glielmi C, Geppert C, Faul D, et al. Comparison of accuracy of PET/CT and PET/MR spatial registration in multiple metastatic lesions. AJR Am J Roentgenol 2013;201:1120-3.
  • 4 Johnson BA, Fram EK, Johnson PC, Jacobwitz R. The Variable MR appearance of Primary Lymphoma of the Central Nervous System: Comparison with Histopathologic features. AJNR Am J Neuroradiol 1997;18:563-72.
  • 5 Chang SC, Lai PH, Chen WL, Weng HH, Ho JT, Wang JS, et al. Diffusion-Weighted MRI features of brain abscess and cystic or necrotic brain tumors: Comparison with conventional MRI. Clin Imaging 2002;26:227-36.
  • 6 Li L, Yuan W, Liu L, Cui C. MRI detected Cranial nerve involvement in Nasopharyngeal carcinoma, carcinogenesis, diagnosis, and Molecular targeted Treatment for nasopharyngeal carcinoma, Dr. Shih-Shun Chen, editor., ISBN: 978-953-307-867-0In Tech. Available from: http://www.intechopen.com/books/ carcinogenesis-diagnosis-and-molecular-targeted- treatment-for-nasopharyngeal- carcinoma/mri-detected-cranial-nerve-involvement-in-nasopharyngeal- carcinoma [Last accessed on 2013 Oct 07].
  • 7 Tian YM, Zeng L, Wang FH, Liu S, Guan Y, Lu TX, et al. Prognostic factors in nasopharyngeal carcinoma with synchronous liver metastasis: A retrospective study for the management of treatment. Radiat Oncol 2013;8:272.
  • 8 Bruegel M, Holzapfel K, Gaa J, Woertler K, Waldt S, Kiefer B, et al. Characterisation of focal liver lesions by ADC measurements using a respiratory triggered DW single shot echoplanar imaging technique. Eur Radiol 2008;18:477-85.
  • 9 Park H, Wood D, Hussain H, Meyer CR, Shah RB, Johnson TD, et al. Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med 2012;53:546-51.
  • 10 Shortt CP, Gleeson TG, Breen KA, McHugh J, O′Connell MJ, O′Gorman PJ, et al. Whole body MRI versus PET in assessment of Multiple Myeloma Disease activity. AJR Am J Roentgenol 2009;192:980-6.
  • 11 Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: Physiological and benign variants. Radiographics 1999;19:1 61-77.
  • 12 Patel NC, Nazir SA, Khan Z, Gleeson FV, Bradley KM. 18 F-FDG PET/CT of cervical carcinoma. AJR Am J Roentgenol 2011;196:1225-33.
  • 13 Von Schulthess GK, Sclemmer HP. A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 2009;36:S3-9.
  • 14 Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemensm MR integrated whole-body PET/MR scanner. J Nucl Med 2011;52:1914-22.
  • 15 Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: Initial experience in 134 patients-a hypothesis-generating exploratory study. Radiology 2013;269:857-69.
  • 16 Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, Part 1: Tumors of the Brain, Head and Neck, Chest, Abdomen, and Pelvis. J Nucl Med 2012;53:928-38.
  • 17 Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, et al. First Clinical Experience with Integrated Whole-Body PET/MR: Comparison to PET/CT in Patients with Oncologic Diagnoses. J Nucl Med 2012;53:845-55.
  • 18 Al-Nabhani KZ, Syed R, Michopoulou S, Alkalbani J, Afaq A, Panagiotidis E, et al. Qualitative and Quantitative Comparison of PET/CT and PET/MR Imaging in Clinical Practice J Nucl Med 2014;55:88-94.
  • 19 Heusch P, Buchbender C, Beiderwellen K, Nensa F, Hartung-Knemeyer V, Lauenstein TC, et al. Standardized uptake values for [18F] FDG in normal organ tissues: Comparison of whole-body PET/CT and PET/MRI. Eur J Radiol 2013;82:870-6.