CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2014; 24(03): 259-267
DOI: 10.4103/0971-3026.137038
Musculoskeletal Radiology

Comparison of conventional MRI and MR arthrography in the evaluation of wrist ligament tears: A preliminary experience

Shivani Pahwa
Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
,
Deep N Srivastava
Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
,
Raju Sharma
Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
,
Shivanand Gamanagatti
Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
,
Prakash P Kotwal
Department of Orthopedics, All India Institute of Medical Sciences, New Delhi, India
,
Vijay Sharma
Department of Orthopedics, All India Institute of Medical Sciences, New Delhi, India
› Author Affiliations

Abstract

Aims: To compare conventional magnetic resonance imaging (MRI) and direct magnetic resonance (MR) arthrography in the evaluation of triangular fibrocartilage complex (TFCC) and intrinsic wrist ligament tears. Materials and Methods: T1-weighted, fat suppressed (FS) proton density plus T2-weighted (FS PD/T2), 3D multiple-echo data image combination (MEDIC) sequences and direct MR arthrography were performed in 53 patients with wrist pain. Images were evaluated for the presence and location of TFCC, scapholunate ligament (SLL) and lunatotriquetral ligament (LTL) tears, and imaging findings were compared with operative findings in 16 patients who underwent arthroscopy or open surgery (gold standard). Results: Sixteen patients underwent arthroscopy/open surgery: 12 TFCC tears were detected arthroscopically out of which 9 were detected on FS PD/T2 sequence, 10 on MEDIC sequence, and all 12 were detected on MR arthrography. The sensitivities of FS PD/T2, MEDIC sequences, and MR arthrography in the detection of TFCC tears were 75%, 83.3%, and 100%, respectively. Out of the eight arthroscopically confirmed SLL tears, three tears were detected on FS PD/T2 sequence, five on MEDIC sequence, and all eight were visualized on MR arthrography. The sensitivities of FS PD/T2, MEDIC sequences, and MR arthrography in detecting SLL tears were 37.5%, 62.5%, and 100%, respectively. One arthroscopically confirmed LTL tear was diagnosed on FS PD/T2 sequence, three on MEDIC sequence, and all five arthroscopically confirmed LTL tears were detected with MR arthrography. The sensitivities of PD, MEDIC sequences, and MR arthrography in detecting LTL tears were 20%, 40%, and 100%, respectively. Conclusions: MR arthrography is the most sensitive and specific imaging modality for the evaluation of wrist ligament tears.



Publication History

Article published online:
02 August 2021

© 2014. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Stoller David W. Magnetic Resonance Imaging in Orthopaedics and Sports Medicine. 3 rd ed. Philadelphia, USA: Lippincott William and Wilkins; 2006 p. 1627-847.
  • 2 Green DP. Green′s Operative Hand Surgery. 6 th ed. USA: Elsevier; 2010 p. 429-745.
  • 3 Palmer AK, Werner FW. The triangular fibrocartilage complex of the wrist: anatomy and function. J Hand Surg 1981;6:153-62.
  • 4 Smith DK. Scapholunate interosseous ligament of the wrist: MR appearances in asymptomatic volunteers and arthrographically normal wrists. Radiology 1994;192:217-21.
  • 5 Smith DK, Snearly WN. Lunotriquetralinterosseous ligament of the wrist: MR appearances in asymptomatic volunteers and arthrographically normal wrists. Radiology 1994;191:199-202.
  • 6 Hobby JL, Dixon AK, Bearcroft PW, Tom BD, Lomas DJ, Rushton N, et al. MR imaging of the wrist: Effect on clinical diagnosis and patient care. Radiology 2001;220:589-93.
  • 7 Cerezal L, Abascal F, Garcia-Valtuille R, del Pinal. Wrist arthrography: How, why, when. Radiol Clin North Am 2005;43:709-31.
  • 8 Zlatkin MB, Chao PC, Osterman AL, Schnall MD, Dalinka MK, Kressel HY. Chronic wrist pain: evaluation with high resolution MR imaging. Radiology 1989;173:723-9.
  • 9 Schweitzer ME, Brahme SK, Hodler J, Hanker GJ, Lynch TP, Flannigan BD, et al. Chronic wrist pain: spine-echo and short term inversion recovery MR imaging and conventional and MR arthrography. Radiology 1992;182:205-11.
  • 10 Scheck RJ, Romagnolo A, Hierner R, Pfluger T, Wilhelm K, Hahn K. The carpal ligaments in MR arthrography of wrist: Correlation with standard MRI and wrist arthroscopy. J Magn Reson Imaging 1999;9:468-74.
  • 11 Haims AH, Schweitzer ME, Morrison WB, Deely D, Lange R, Osterman AL, et al. Limitations of MR imaging in the diagnosis of peripheral tears of the triangular fibrocartilage of the wrist. AJR Am J Roentgenol 2002;178:419-22.
  • 12 Scheck RJ, Kubitzek C, Hierner R, Szeimies U, Pfluger T, Wilhelm K, et al. The scapholunate interosseous ligament in MR arthrography of the wrist: correlation with non-enhanced MRI and wrist arthroscopy. Skeletal Radiol 1997;26:263-71.
  • 13 Zanetti M, Bra¨m J, Hodler J. Triangular fibrocartilage and intercarpal ligaments of the wrist: Does MR arthrography improve standard MR imaging? J Magn Reson Imaging 1997;7:590-4.
  • 14 Oneson SR, Timins ME, Scales LM, Erickson SJ, Chamoy L. MR imaging diagnosis of triangular fibrocartilage pathology with arthroscopic correlation. Am J Roentgenol 1997;168:1513-8.
  • 15 ACR Appropriateness Criteria®. Overview. Rubin: American College of Radiology; 2012. Electronic copies: Available in Portable Document Format (PDF) from the American College of Radiology (ACR) Web site.
  • 16 Magee T. Comparison of 3T MRI and arthroscopy of intrinsic wrist ligament and TFCC tears. AJR Am J Roentgenol 2009;192:80-5.
  • 17 Palmer AK. Triangular fibrocartilage complex lesions: A classification. J Hand Surg Am 1989;14:594-605.
  • 18 Morris PJ, Wood WC. Oxford′s Textbook of Surgery. 2 nd ed. New York, USA: Oxford University Press; 2000 p. 2068-3078.
  • 19 Thiru-Pathi RG, Ferlic DC, Clayton MC, McLure DC. Arterial anatomy of the triangular fibrocartilage of the wrist and its surgical significance. J Hand Surg 1986;20B; 178-84.
  • 20 Cerezal L, Abascal F, Garcia-Valtuille R, del Pinal F. Imaging findings in ulnar-sided wrist impaction syndromes. RadioGraphics 2002;22:105-21.
  • 21 Levinsohn ME, Rosen DI, Palmer AK. Wrist arthrography: Value of the three-compartment injection method. Radiology 1991;179:231-9.
  • 22 Linkous MD, Gilula LA. Wrist arthrography today. Radiol Clin North Am 1998;36:651-72.
  • 23 Manaster BJ. The clinical efficacy of triple-injection wrist arthrography. Radiology 1991;178:267-70.