CC BY-NC-ND 4.0 · Indian J Med Paediatr Oncol 2012; 33(04): 195-202
DOI: 10.4103/0971-5851.107074
REVIEW ARTICLE

Potential molecular targets for Ewing′s sarcoma therapy

Babu Jully
Department of Molecular Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
,
Thangarajan Rajkumar
Department of Molecular Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
› Author Affiliations

Abstract

Ewing′s sarcoma (ES) is a highly malignant tumor of children and young adults. Modern therapy for Ewing′s sarcoma combines high-dose chemotherapy for systemic control of disease, with advanced surgical and/or radiation therapeutic approaches for local control. Despite optimal management, the cure rate for localized disease is only approximately 70%, whereas the cure rate for metastatic disease at presentation is less than 30%. Patients who experience long-term disease-free survival are at risk for significant side-effects of therapy, including infertility, limb dysfunction and an increased risk for second malignancies. The identification of new targets for innovative therapeutic approaches is, therefore, strongly needed for its treatment. Many new pharmaceutical agents have been tested in early phases of clinical trials in ES patients who have recurrent disease. While some agents led to partial response or stable disease, the percentages of drugs eliciting responses or causing an overall effect have been minimal. Furthermore, of the new pharmaceuticals being introduced to clinical practice, the most effective agents also have dose-limiting toxicities. Novel approaches are needed to minimize non-specific toxicity, both for patients with recurrence and at diagnosis. This report presents an overview of the potential molecular targets in ES and highlights the possibility that they may serve as therapeutic targets for the disease. Although additional investigations are required before most of these approaches can be assessed in the clinic, they provide a great deal of hope for patients with Ewing′s sarcoma.



Publication History

Article published online:
20 July 2021

© 2012. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Sailer SL, Harmon DC, Mankin HJ, Truman JT, Suit HD. Ewing′s sarcoma: surgical resection as a prognostic factor. Int J Radiat Oncol Biol Phys 1988;15:43-52.
  • 2 Arai Y, Kun LE, Brooks MT, Fairclough DL, Fontanesi J, Meyer WH, et al. Ewing′s sarcoma: Local tumor control and patterns of failure following limited-volume radiation therapy. Int J Radiat Oncol Biol Phys 1991;21:1501-8.
  • 3 Donaldson SS, Torrey M, Link MP, Glicksman A, Gilula L, Laurie F, et al. A multidisciplinary study investigating radiotherapy in Ewing′s sarcoma: end results of POG #8346. Pediatric Oncology Group. Int J Radiat Oncol Biol Phys 1998;42:125-35.
  • 4 Dunst J, Jürgens H, Sauer R, Pape H, Paulussen M, Winkelmann W, et al. Radiation therapy in Ewing′s sarcoma: an update of the CESS 86 trial. Int J Radiat Oncol Biol Phys 1995;32:919-30.
  • 5 Hayes FA, Thompson EI, Meyer WH, Kun L, Parham D, Rao B, et al. Therapy for localized Ewing`s sarcoma of bone. J Clin Oncol 1989;7:208-13.
  • 6 Bacci G, Mercuri M, Longhi A, Bertoni F, Barbieri E, Donati D, et al. Neoadjuvant chemotherapy for Ewing′s tumour of bone: recent experience at the Rizzoli Orthopaedic Institute. Eur J Cancer 2002;38:2243-51.
  • 7 Iwamoto Y. Diagnosis and Treatment of Ewing′s Sarcoma. Jpn J Clin Oncol 2007;37:79-89.
  • 8 Grier HE, Krailo MD, Tarbell NJ, Link MP, Fryer CJ, Pritchard DJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing′s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 2003;348:694-701.
  • 9 Arndt CA, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 1999;341:342-52.
  • 10 Riggi N, Stamenkovic I. The Biology of Ewing sarcoma. Cancer Lett 2007;254:1-10.
  • 11 Arvand A, Denny CT. Biology of EWS/ETS fusions in Ewing′s family tumors. Oncogene 2001;20:5747-54.
  • 12 Zucman J, Melot T, Desmaze C, Ghysdael J, Plougastel B, Peter M, et al. Modern diagnostic methods in the Ewing′s sarcoma family: Six patients with histologic soft tissue tumors. EMBO J 1993;12:4481-7.
  • 13 Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumors. Nature 1992;359:162-5.
  • 14 May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB, et al. The Ewing′s Sarcoma EWS/FLI-1 Fusion Gene Encodes a More Potent Transcriptional Activator and Is a More Powerful Transforming Gene than FLI-1. Mol Cell Biol 1993;13:7393-8.
  • 15 May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, et al. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLII for transformation. Proc Natl Acad Sci 1993;90:5752-6.
  • 16 Ohno T, Rao VN, Reddy ES. EWS/Fli-1 Chimeric Protein Is a Transcriptional Activator1. Cancer Res 1993;53:5859-63.
  • 17 Uren A, Toretsky JA. Ewing′s sarcoma oncoprotein EWS-FLI1: the perfect target without a therapeutic agent. Future Oncol 2005;1:521-8.
  • 18 Jedlicka P. Ewing sarcoma, an enigmatic malignancy of likely progenitor cell origin, driven by transcription factor oncogenic fusions. Int J Clin Exp Pathol 2010;3:338-47.
  • 19 Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing′s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest 1997;99:239-47.
  • 20 Toretsky JA, Connell Y, Neckers L, Bhat NK. Inhibition of EWS-FLI-1 fusion protein with antisense oligodeoxynucleotides. J Neurooncol 1997;31:9-16.
  • 21 Ouchida M, Ohno T, Fujimura Y, Rao VN, Reddy ES. Loss of tumorigenicity of Ewing′s sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene 1995;11:1049-54.
  • 22 Kovar H, Aryee DN, Jug G, Henöckl C, Schemper M, Delattre O, et al. EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ 1996;7:429-37.
  • 23 Maksimenko A, Lambert G, Bertrand JR, Fattal E, Couvreur P, Malvy C. Therapeutic potentialities of EWS-Fli-1 mRNA-targeted vectorized antisense oligonucleotides. Ann N Y Acad Sci 2003;1002:72-7.
  • 24 Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing′s sarcoma. Cancer Res 2005;65:8984-92.
  • 25 Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537-41.
  • 26 Rossi JJ. RNAi therapeutics: SNALPing siRNAs in vivo. Gene Ther 2006;13:583-4.
  • 27 Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev 2009;61:710-20.
  • 28 Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci 2010;107:1235-40.
  • 29 Toub N, Bertrand JR, Tamaddon A, Elhamess H, Hillaireau H, Maksimenko A, et al. Efficacy of siRNA nanocapsules targeted against the EWS-Fli1 oncogene in Ewing sarcoma. Pharm Res 2006;23:892-900.
  • 30 Petermann R, Mossier BM, Aryee DN, Khazak V, Golemis EA, Kovar H. Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase II. Oncogene 1998;17:603-10.
  • 31 Nakatani F, Tanaka K, Sakimura R, Matsumoto Y, Matsunobu T, Li X, et al. Identification of p21 WAF[1]/CIP[1] as a Direct Target of EWS-Fli1 Oncogenic Fusion Protein. J Biol Chem 2003;278:15105-15.
  • 32 Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP, et al. Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res 2006;66:5574-81.
  • 33 Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing′s sarcoma. Nat Med 2009;15:750-6.
  • 34 Aryee DN, Kreppel M, Bachmaier R, Uren A, Muehlbacher K, Wagner S, et al. Single-chain Antibodies to the EWS NH2 Terminus Structurally Discriminate between Intact and Chimeric EWS in Ewing′s Sarcoma and Interfere with the Transcriptional Activity of EWS In vivo. Cancer Res 2006;66:9862-9.
  • 35 Dagher R, Long LM, Read EJ, Leitman SF, Carter CS, Tsokos M, et al. Pilot trial of tumor-specific peptide vaccination and continuous infusion interleukin-2 in patients with recurrent Ewing sarcoma and alveolar rhabdomyosarcoma: An inter institute NIH study. Med Pediatr Oncol 2002;38:158-64.
  • 36 LeRoith D, Baserga R, Helman L, Roberts CT Jr. Insulin-like growth factors and cancer. Ann Intern Med 1995;122:54-9.
  • 37 Yee D, Favoni RE, Lebovic GS, Lombana F, Powell DR, Reynolds CP, et al. Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor. J Clin Invest 1990;86:1806-14.
  • 38 van Valen F, Winkelmann W, Jürgens H. Type I and type II insulin-like growth factor receptors and their function in human Ewing′s sarcoma cells. J Cancer Res Clin Oncol 1992;118:269-75.
  • 39 Scotlandi K, Benini S, Sarti M, Serra M, Lollini PL, Maurici D, et al. Insulin-like growth factor I receptor-mediated circuit in Ewing′s sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target. Cancer Res 1996;56:4570-4.
  • 40 Cironi L, Riggi N, Provero P, Wolf N, Suvà ML, Suvà D, et al. IGF1 is a common target gene of Ewing′s sarcoma fusion proteins in mesenchymal progenitor cells. PLoS One 2008;3:e2634.
  • 41 Herrero-Martín D, Osuna D, Ordóñez JL, Sevillano V, Martins AS, Mackintosh C, et al. (2009). Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer 2009;101:80-90.
  • 42 Hamilton G, Mallinger R, Hofbauer S, Havel M. The monoclonal HBA-71 antibody modulates proliferation of thymocytes and Ewing′s sarcoma cells by interfering with the action of insulin-like growth factor I. Thymus 1991;18:33-41.
  • 43 Scotlandi K, Benini S, Nanni P, Lollini PL, Nicoletti G, Landuzzi L, et al. Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewing′s sarcoma in athymic mice. Cancer Res 1998;58:4127-31.
  • 44 Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock R, Carol H, et al. Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 2008;50:1190-7.
  • 45 Kurmasheva RT, Dudkin L, Billups C, Debelenko LV, Morton CL, Houghton PJ. The insulin-like growth factor-1 receptor targeting antibody, CP-751 871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res 2009;69:7662-71.
  • 46 Tolcher AW, Sarantopoulos J, Patnaik A, Papadopoulos K, Lin CC, Rodon J, et al. Phase I, Pharmacokinetic, and Pharmacodynamic Study of AMG 479, a Fully Human Monoclonal Antibody to Insulin-Like Growth Factor Receptor 1. J Clin Oncol 2009;27:5800-7.
  • 47 Olmos D, Postel-Vinay S, Molife LR, Okuno SH, Schuetze SM, Paccagnella ML, et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751 871) in patients with sarcoma and Ewing′s sarcoma: A phase 1 expansion cohort study. Lancet Oncol 2009;11:129-35.
  • 48 McKian KP, Haluska P. Cixutumumab. Expert Opin Investig Drugs 2009;18:1025-33.
  • 49 Scartozzi M, Bianconi M, Maccaroni E, Giampieri R, Berardi R, Cascinu S. Dalotuzumab, a recombinant humanized mAb targeted against IGFR1 for the treatment of cancer. Curr Opin Mol Ther 2010;12:361-71.
  • 50 Subbiah V, Anderson P. Targeted Therapy of Ewing′s Sarcoma. Sarcoma 2011;2011:686985.
  • 51 Hewish M, Chau I, Cunningham D. Insulin-like growth factor 1 receptor targeted therapeutics: novel compounds and novel treatment strategies for cancer medicine. Recent Pat Anticancer Drug Discov 2009;4:54-72.
  • 52 Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair D, et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med Chem 2009;1:1153-71.
  • 53 Schenone S, Brullo C, Musumeci F, Botta M. Novel dual Src/ Abl inhibitors for hematologic and solid malignancies. Expert Opin Investig Drugs 2010;19:931-45.
  • 54 Olmos D, Tan DS, Jones RL, Judson IR. Biological rationale and current clinical experience with anti insulin-like growth factor 1 receptor monoclonal antibodies in treating sarcoma: twenty years from the bench to the bedside. Cancer J 2010;16:183-94.
  • 55 Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W, et al. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther 2009;8:3341-9.
  • 56 Sabbatini P, Rowand JL, Groy A, Korenchuk S, Liu Q, Atkins C, et al. Antitumor activity of GSK1904529A, a small-molecule inhibitor of the insulin like growth factor-I receptor tyrosine kinase. Clin Cancer Res 2009;15:3058-67.
  • 57 Sabbatini P, Korenchuk S, Rowand JL, Groy A, Liu Q, Leperi D, et al. GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol Cancer Ther 2009;8:2811-20.
  • 58 Kovar H, Dworzak M, Strehl S, Schnell E, Ambros IM, Ambros PF, et al. Overexpression of the pseudoautosomal gene MIC2 in Ewing′s sarcoma and peripheral primitive neuroectodermal tumor. Oncogene 1990;5:1067-70.
  • 59 Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer- Kuntschik M. MIC2 is a specific marker for Ewing′s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing′s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 1991;67:1886-93.
  • 60 Fellinger EJ, Garin-Chesa P, Triche TJ, Huvos AG, Rettig WJ. Immunohistochemical analysis of Ewing′s sarcoma cell surface antigen p30/32MIC2. Am J Pathol 1991;139:317-25.
  • 61 Rocchi A, Manara MC, Sciandra M, Zambelli D, Nardi F, Nicoletti G, et al. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. J Clin Invest 2010;120:668-80.
  • 62 Sohn HW, Choi EY, Kim SH, Lee IS, Chung DH, Sung UA, et al. Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing′s sarcoma cells. Am J Pathol 1998;153:1937-45.
  • 63 Scotlandi K, Baldini N, Cerisano V, Manara MC, Benini S, Serra M, et al. CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res 2000;60:5134-42.
  • 64 Ban J, Bennani-Baiti IM, Kauer M, Schaefer KL, Poremba C, Jug G , et al. EWS-FLI1 suppresses NOTCH-activated p53 in Ewing′s sarcoma. Cancer Res 2008;68:7100-9.
  • 65 Li Y, Tanaka K, Fan X, Nakatani F, Li X, Nakamura T, et al. Inhibition of the transcriptional function of p53 by EWS-Fli1 chimeric protein in Ewing Family Tumors. Cancer Lett 2010;294:57-65.
  • 66 Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844-8.
  • 67 Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008;13:454-63.
  • 68 Pishas KI, Al-Ejeh F, Zinonos I, Kumar R, Evdokiou A, Brown MP, et al. Nutlin-3a is a potential therapeutic for Ewing Sarcoma. Clin Cancer Res 2011;17:494-504.
  • 69 Choong ML, Yang H, Lee MA, Lane DP. Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 2009;8:2810-8.
  • 70 Vignot S, Faivre S, Aguirre D, Raymond E. Review mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 2005;16:525-37.
  • 71 O′Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mT OR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006;66:1500-8.
  • 72 Mateo-Lozano S, Tirado OM, Notario V. Rapamycin induces the fusion type independent downregulation of the EWS/ FLI1 proteins and inhibits Ewing′s sarcoma cell proliferation. Oncogene 2003;22:9282-7.
  • 73 Mateo-Lozano S, Gokhale PC, Soldatenkov VA, Dritschilo A, Tirado OM, Notario V. Combined Transcriptional and Translational Targeting of EWS/FLI-1in Ewing′s Sarcoma. Clin Cancer Res 2006;12:6781-90.
  • 74 Reed JC, Stein C, Subasinghe C, Haldar S, Croce CM, Yum S, et al. Antisense mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: Comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 1990;50:6565-70.
  • 75 Smith MR, Abubakr Y, Mohammad R, Xie T, Hamdan M, al- Katib A, et al. Antisense oligodeoxyribonucleotide down-regulation of bcl-2 gene expression inhibits growth of the lowgrade non-Hodgkin′s lymphoma cell line WSU-FSCCL. Cancer Gene Ther 1995;2:207-12.
  • 76 Reed JC. bcl-2: prevention of apoptosis as a mechanism of drug resistance. Hematol Oncol Clin North Am 1995;9:451-73.
  • 77 Ramani P, Lu QL. Expression of bcl-2 gene product in neuroblastoma. J Pathol 1994;172:273-8.
  • 78 Dole M, Nunez G, Merchant AK, Maybaum J, Rode CK, Bloch CA, et al. Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res 1994;54:3253-9.
  • 79 Fulda S, Debatin KM. Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Med Pediatr Oncol 2000;35:616-8.
  • 80 Soldatenkov VA, Dritschilo A. Apoptosis of Ewing′s sarcoma cells is accompanied by accumulation of ubiquitinated proteins. Cancer Res 1997;57:3881-5.
  • 81 Mayo MW, Wang CY, Drouin SS, Madrid LV, Marshall AF, Reed JC, et al. WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 1999;18:3990-4003.
  • 82 Re GG, Hazen-Martin DJ, El Bahtimi R, Brownlee NA, Willingham MC, Garvin AJ. Prognostic significance of bcl-2 in Wilms′ tumor and oncogenic potential of Bcl-X(L) in rare tumor cases. Int J Cancer 1999;84:192-200.
  • 83 Kawauchi S, Fukuda T, Oda Y, Saito T, Oga A, Takeshita M, et al. Prognostic significance of apoptosis in synovial sarcoma: Correlation with clinicopathologic parameters, cell proliferative activity, and expression of apoptosis related proteins. Mod Pathol 2000;13:755-65.
  • 84 Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC. Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev 1994;4:71-9.
  • 85 Campos L, Sabido O, Rouault JP, Guyotat D. Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 1994;84:595-600.
  • 86 Rheingold SR, Hogarty MD, Blaney SM, Zwiebel JA, Sauk- Schubert C, Chandula R, et al. Phase I Trial of G3139, a bcl-2 Antisense Oligonucleotide, Combined With Doxorubicin and Cyclophosphamide in Children With Relapsed Solid Tumors: A Children′s Oncology Group Study. J Clin Oncol 2007;25:1512-8.