CC BY-NC-ND 4.0 · J Lab Physicians 2013; 5(02): 100-108
DOI: 10.4103/0974-2727.119852
Original Article

Procalcitonin as a Predictor of Sepsis and Outcome in Severe Trauma Patients: A Prospective Study

Nonika Rajkumari
Departments of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre All India Institute of Medical Sciences, New Delhi, India
,
Purva Mathur
Departments of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre All India Institute of Medical Sciences, New Delhi, India
,
Satyapriya Sharma
Departments of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre All India Institute of Medical Sciences, New Delhi, India
,
Babita Gupta
Department of Anaesthesia and Critical Care, Jai Prakash Narayan Apex Trauma Centre All India Institute of Medical Sciences, New Delhi, India
,
Sanjeev Bhoi
Department of Emergency Medicine, Jai Prakash Narayan Apex Trauma Centre All India Institute of Medical Sciences, New Delhi, India
,
Mahesh C Misra
Department of Surgery, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
› Author Affiliations
Source of Support: Nil.

ABSTRACT

Introduction: Despite the advances in medical sciences, the morbidity and mortality due to sepsis in severe trauma patients remains high; hence the need for early and accurate diagnosis. Very few prospective studies are available in a country like India, which tried to analyze the prediction of sepsis using serum procalcitonin (PCT) in such a large scale among trauma patients. This study explores the role of the biomarker PCT in early diagnosis of sepsis and prediction of outcomes in severe trauma cases.

Materials and Methods: We studied the patient population prospectively in two different groups. One with acute trauma but no clinical evidence of sepsis and the second group with clinical evidence of sepsis and are followed. Bronchoalveolar lavage, tracheal aspirates, pus, urine, body fluids from sterile body sites, etc., were collected including blood for culture and serum for PCT assays. Such assays were done on samples collected on days 1 and 4 and then compared. Additionally, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) levels were also tested. Antimicrobial sensitivity tests were carried out for all the isolates from the clinical samples and correlated with the clinically suspected cases of sepsis. Outcomes of the patients were noted.

Results: Patients with high initial PCT levels (>2 ng/ml) in severe trauma cases had poor outcomes and risk of developing complications. Its correlation with severe outcomes was better marked as compared with CRP and ESR levels. The difference in PCT levels between days 1 and 4 in group two patients was statistically significant (P = 0.006) but were not statistically significant for CRP (P = 0.646) and ESR (P = 0.935). The study also shows that PCT levels fall in response to appropriate antimicrobial treatment.

Conclusion: PCT is a useful biomarker for early and accurate prediction of sepsis in severe trauma patients. If used in adjunct to clinical findings, it proves to be a good biomarker for early diagnosis, treatment and for monitoring response to therapy in confirmed cases of sepsis. It will prove to be a good supportive indicator of sepsis in early stages for the trauma patients in a low resource country like India.



Publication History

Article published online:
07 April 2020

© 2013.

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • REFERENCES

  • 1 American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992;20:864-74.
  • 2 De La Rosa GD, Valencia ML, Arango CM, Gomez CI, Garcia A, Ospina S, et al. Towards an operative diagnosis in sepsis: A latent class approach. BMC Infect Dis 2008;19:8-18.
  • 3 Slade E, Tamber PS, Vincent JL. The surviving sepsis campaign: Raising awareness to reduce mortality. Crit Care 2003; 7 :1-2.
  • 4 Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med 2000;26:S64-74.
  • 5 Tang BM, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: Systematic review and meta-analysis. Lancet Infect Dis 2007;7:210-7.
  • 6 Joshipura MK, Shah HS, Patel PR, Divatia PA, Desai PM. Trauma care systems in India. Injury 2003;34:686-92.
  • 7 Radjou AN, Balliga DK, Pal R, Mahajan P. Injury-related mortality audit in a regional trauma center at Puducherry, India. J Emerg Trauma Shock 2012;5:42-8.
  • 8 Marra AR, Edmond MB, Forbes BA, Wenzel RP, Bearman GM. Time to blood culture positivity as a predictor of clinical outcome of Staphylococcus aureus bloodstream infection. J Clin Microbiol 2006;44:1342-6.
  • 9 Martínez JA, Soto S, Fabrega A, Almela M, Mensa J, Soriano A. Relationship of phylogenetic background, biofilm production, and time to detection of growth in blood culture vials with clinical variables and prognosis associated with Escherichia coli bacteremia. J Clin Microbiol 2006;44:1468-74.
  • 10 Beekman SE, Diekema DJ, Chapin KC, Doern GV. Effects of rapid detection of bloodstream infection on length of hospitalisation and hospital charges. J Clin Microbiol 2003;41:3119-25.
  • 11 Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996;22:707-10.
  • 12 Muller B, Harbarth S, Stolz D, Bingisser R, Mueller C, Leuppi J, et al. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect Dis 2007;7:10.
  • 13 Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: A marker for prognosis and future therapeutic options. J Infect Dis 2000;181:176-80.
  • 14 Christ-Crain M, Müller B. Procalcitonin in bacterial infections-hype, hope, more or less? Swiss Med Wkly 2005;135:451-60.
  • 15 Christ-Crain M, Müller B. Biomarkers in respiratory tract infections: Diagnostic guides to antibiotic prescription, prognostic markers and mediators. Eur Respir J 2007;30:556-73.
  • 16 Linscheid P, Seboek D, Zulewski H, Keller U, Müller B. Autocrine/paracrine role of inflammation-mediated calcitonin gene-related peptide and adrenomedullin expression in human adipose tissue. Endocrinology 2005;146:2699-708.
  • 17 Schuetz P, Christ-Crain M, Müller B. Procalcitonin and other biomarkers to improve assessment and antibiotic stewardship in infections-hope for hype? Swiss Med Wkly 2009;139:318-26.
  • 18 Schuetz P, Albrich W, Mueller B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: Past, present and future. BMC Med 2011;9:107.
  • 19 Becker KL, Nylén ES, White JC, Müller B, Snider RH Jr. Clinical review of 167: Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: A journey from calcitonin back to its precursors. J Clin Endocrinol Metab 2004;89:1512-25.
  • 20 Munford RS. Severe sepsis and septic shock. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J, editors. Harrison′s Principles of Internal Medicine. 18 th ed. New York: Mc Graw Hill; 2012. p. 2223-31.
  • 21 Civil ID, Schwab CW. The abbreviated injury scale, 1985 revision: A condensed chart for clinical use. J Trauma 1988;28:87-90.
  • 22 Collee JG, Miles RS, Watt B. Tests for the identification of bacteria. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and McCartney Practical Medical Microbiology. 14th ed. New York: Churchill Livingstone; 1996. p. 131-45.
  • 23 Bele N, Darmon M, Coquet I, Feugeas JP, Legriel S, Adaoui N, et al. Diagnostic accuracy of procalcitonin in critically ill immunocompromised patients. BMC Infect Dis 2011;11:224.
  • 24 Castelli GP, Pognani C, Cita M, Stuani A, Sgarbi L, Paladini R. Procalcitonin, C reactive protein, white blood cells and SOFA score in ICU: Diagnosis and monitoring of sepsis. Minerva Anestesiol 2006;72:69-80.
  • 25 Becker JU, Theodosis C, Jacob ST, Wira CR, Groce NE. Surviving sepsis in low income and middle-income countries: New directions for care and research. Lancet Infect Dis 2009;9:577-82.
  • 26 Meisner M, Adina H, Schmidt J. Correlation of procalcitonin and C-reactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients. Crit Care 2006;10:R1.
  • 27 Sakran JV, Michetti CP, Sheridan MJ, Richmond R, Waked T, Aldaghlas T, et al. The utility of procalcitonin in critically ill trauma patients. J Trauma Acute Care Surg 2012;73:413-8.
  • 28 Georgopoulou AP, Savva A, Giamarellos-Bourboulis EJ, Georgitsi M, Raftogiannis M, Antonakos N, et al. Early changes of procalcitonin may advise about prognosis and appropriateness of antimicrobial therapy in sepsis. J Crit Care 2011;26:331.
  • 29 Jensen JU, Heslet L, Jensen TH, Espersen K, Steffensen P, Tvede M. Procalcitonin increase in early identification of critically ill patients at high risk of mortality. Crit Care Med 2006;34:2596-602.
  • 30 Friederichs J, Hutter M, Hierholzer C, Novotny A, Friess H, Bühren V, et al. Procalcitonin ratio as a predictor of successful surgical treatment of severe necrotizing soft tissue infections. Am J Surg 2013;206:368-73.
  • 31 Schuetz P, Maurer P, Punjabi V, Desai A, Amin D, Gluck E. Procalcitonin decrease over 72 hours in US critical care units predicts fatal outcome in sepsis patients. Crit Care 2013;17:R115.
  • 32 Hoeboer SH, Groeneveld AB. Changes in circulating procalcitonin versus C-reactive protein in predicting evolution of infectious disease in febrile, critically ill patients. PLoS One 2013;8:e65564.