CC BY-NC-ND 4.0 · J Lab Physicians 2011; 3(02): 093-097
DOI: 10.4103/0974-2727.86841
Original Article

Metallo-β-lactamase-producing Clinical Isolates from Patients of a Tertiary Care Hospital

Durgesh Gopalrao Deshmukh
Department of Microbiology, Government Medical College, Aurangabad, Maharashtra, India
,
Ajit S Damle
Department of Microbiology, Government Medical College, Aurangabad, Maharashtra, India
,
Jyoti K Bajaj
Department of Microbiology, Government Medical College, Aurangabad, Maharashtra, India
,
Jayshree B Bhakre
Department of Microbiology, Government Medical College, Aurangabad, Maharashtra, India
,
Neeta S Patwardhan
Department of Microbiology, Government Medical College, Aurangabad, Maharashtra, India
› Author Affiliations
Source of Support: Nil

ABSTRACT

Background: The growing increase in the rates of antibiotic resistance is a major cause for concern in both non-fermenting bacilli and isolates of the Enterobacteriaceae family. β-lactams have been the mainstay of treatment for serious infections, and the most active of these are the carbapenems. Acquired metallo-β-lactamases (MBL) have recently emerged as one of the most worrisome resistance mechanisms owing to their capacity to hydrolyze all β-lactams, including carbapenems. We have undertaken this investigation to ascertain the prevalence of MBL-producing non-fermenting bacilli and Enterobacteriaceae.

Materials and Methods: The study was conducted over a period of 4 months in a 1200-bedded teaching hospital. Isolates included in the study were screened for imipenem resistance both by conventional methods and mini analytical profile index (miniAPI). The isolates that showed imipenem resistance were tested for MBL production by imipenem (IMP)-ethylenediaminetetraacetic acid combined disc test. Imipenem-resistant non-MBL isolates also tested for Modified Hodge test and AmpC β-lactamases production to detect other mechanisms of carbapenem resistance.

Results: Of 638 gram negative bacilli isolates and 3.39% showed imipenem resistance, 2.9% showed MBL production, of which 1.7% were non-fermenters and 1.25% were Enterobacteriaceae, 0.3% showing non-MBL KPC carbapenemas. Most isolates were from the intensive care unit and from post-operative patients. Our findings show that there are significant numbers of isolates having MBL production along with multidrug resistance. There is a need for active surveillance to detect MBL producers.



Publication History

Article published online:
09 May 2020

© 2011.

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • REFERENCES

  • 1 Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-βlactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrob Agents Chemother 2009;53:5046-54.
  • 2 Behera B, Mathur P, Das A, Kapil A, Sharma V. An evaluation of four different phenotypic techniques for detection of metallo-β-lactamase producing Pseudomonas aeruginosa . Indian J Med Microbiol 2008;26:233-7.
  • 3 Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 2005;18:306-25.
  • 4 Peleg AY, Franklin C, Bell JM, Spelmann DW. Dissemination of the metallo-β lactamase gene bla IMP4 among gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis 2005;41:1549-56.
  • 5 Nordmann P, Poirel L. Emerging carbapenemases in gram-negative aerobes. Clin Microbial Infect 2002;8:321-31.
  • 6 Luzzaro F, Endimiani A, Docquier JD, Mugnaioli C, Bonsignori M, Amicosante G, et al. Prevalence and characterization of metallo-beta-lactamases in clinical isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2004;48:131-5.
  • 7 Senda K, Arakawa Y, Nakashima K, Ito H, Ichiyama S, Shimokata K, et al. Multifocal outbreaks of metallo-beta-lactamase producing Pseudomonas aeruginosa resistant to broad-spectrum beta lactams, including carbapenems. Antimicrob Agents Chemother 1996;40:349-53.
  • 8 Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamases producing clinical isolates of Pseudomonas spp and Acinetobacter spp. J Clin Microbiol 2002;40:3798-801.
  • 9 Galan I , Rekatsina PD, Hatzaki D, Plachouras D, Souli M, Giamarellou H. Evaluation of different laboratory tests for the detection of metallo-b-lactamase production in Enterobacteriaceae. J Antimicrob Chemother 2008;61:548-53.
  • 10 Garza-Ramos U, Morfin-Otero R, Sader HS, Jones RN, Hernández E, Rodriguez-Noriega E, et al. Metallo-β lactamase gene blaIMP-15 in a class 1 integron, In95, from Pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob Agents Chemother 2008;52:2943-6.
  • 11 Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, et al. Molecular characterization of SPM-1, a novel metallo-β-lactamaseisolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother 2002;50;673-9.
  • 12 Giakkoupi P, Xanthaki A, Kanelopoulou M, Vlahaki A, Miriagou V, Kontou S, et al. VIM-1 metallo-_lactamase-producing Klebsiella pneumonia strains in Greek hospitals. J Clin Microbiol 2003;41:3893-6.
  • 13 Dong F, Xu XW, Song WQ, Lü P, Yu SJ, Yang YH, et al. Characterization of multidrug-resistant and metallo-betalactamase- producing Pseudomonas aeruginosa isolates from a paediatric clinic in China. Chinese Med J (Engl) 2008;121:1611-6.
  • 14 Yan JJ, Ko WC, Chuang CL, Wu JJ. Metall-βlactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J Antimicrob Chemother 2002;50:503-11.
  • 15 Fiett J, Baraniak A, Mrówka A, Fleischer M, Drulis-Kawa Z, Naumiuk £, et al. Molecular epidemiology of acquired-metallo-_lactamase-producing bacteria in Poland. Antimicrob Agents Chemother 2006;50:880-6.
  • 16 Collee JG, Diguid JP, Fraser AG. Mackie and McCartney practical Medical Microbiology. 14th ed. Edinburgh: Churchill Livingstone; 1996
  • 17 Clinical and Laboratory standards institute (CLSI). Performance standards for antimicrobial susceptibility testing, 16th informational supplements Wayne PA: CLSI Document M2-A9; 2006.
  • 18 Clinical and Laboratory standards institute (CLSI). Performance standards for antimicrobial susceptibility testing CLSI document M100-S18: Interpretation Standards for Enterobacteriaceae Table 2A, Interpretation Standards for Pseudomonas aeruginosa Table 2B1, 2008:Vol. 28, No.1.p32-39
  • 19 Qu TT, Zhang JL, Wang J, Tao J, Yu YS, Chen YG, et al. valuation of phenotypic tests for detection of metallo-_lactamase-Producing Pseudomonas aeruginosa Strains in China. J Clin Microbiol 2009;47:1136-42.
  • 20 Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge and EDTA-disk synergy tests to screen metallo-_-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2001;7 : 88-91.
  • 21 George AJ. AmpC β lactamases clinical microbiology reviews. Am Soc Microbiol 2009;22:161-82.
  • 22 Navneeth BV, Sridaran D, Sahay D, Belwadi M. A preliminary study of metallo-β-lactamase producing Pseudomonas aeruginosa in hospitalized patients. Indian J Med Res 2002;116:264-8.
  • 23 Gupta V, Datta P, Chander J. Prevalence of metallo-β-lactamase (MBL) producing Pseudomonas spp and Acinetobacter spp in a tertiary care hospital in India. J Infect 2006;52:311-4.
  • 24 Jesudason MV, Kandathil AJ, Balaji V. Comparison of two methods to detect carbapenemase and metallo-β-lactamase production in clinical isolates. Indian J Med Res 2005;121:780-3.
  • 25 Agarwal VA, Dongre SA, Powar RM. Antimicrobial resistance profile of metallo-β-lactamase Pseudomonas aeruginosa producing metallo-β-lactamases. Indian J Med Res 2006;124:588-90.
  • 26 Chakraborty D, Basu S, Das S. A study on infections caused by metallo beta lactamase producing gram negative bacteria in intensive care unit patients. Am J Infect Dis 2010;6:34-9.
  • 27 Livermore DM ,Woodford N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 2006;14;413-20.
  • 28 Pai H, Kim J, Kim J, Lee JH, Choe KW, Gotoh N. Carbapenem resistance mechanisms in Pseudomonasaeruginosa clinical isolates. Antimicrob Agents Chemother 2001;45:480-4.