CC BY-NC-ND 4.0 · Avicenna J Med 2016; 06(03): 75-80
DOI: 10.4103/2231-0770.184066
ORIGINAL ARTICLE

Detection of inducible and constitutive clindamycin resistance among Staphylococcus aureus isolates in a tertiary care hospital, Eastern India

Subasini Majhi
Department of Microbiology, Sriram Chandra Bhanj Medical College and Hospital, Cuttack, Utkal University, Bhubaneswar, Odisha, India
,
Muktikesh Dash
Department of Microbiology, Sriram Chandra Bhanj Medical College and Hospital, Cuttack, Utkal University, Bhubaneswar, Odisha, India
,
Dharitri Mohapatra
Department of Microbiology, Sriram Chandra Bhanj Medical College and Hospital, Cuttack, Utkal University, Bhubaneswar, Odisha, India
,
Ashoka Mohapatra
Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
,
Nirupama Chayani
Department of Microbiology, Sriram Chandra Bhanj Medical College and Hospital, Cuttack, Utkal University, Bhubaneswar, Odisha, India
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Introduction: Clindamycin is an excellent drug for skin and soft tissue Staphylococcus aureus infections, but resistance mediated by inducible macrolide-lincosamide-streptogramin B (iMLS B ) phenotype leads to in vivo therapeutic failure even though they may be in vitro susceptible in Kirby-Bauer disk diffusion method. Objective: The study was aimed to detect the prevalence of iMLS B phenotype among S. aureus isolates by double disk approximation test (D-test) in a tertiary care hospital, Eastern India. Materials and Methods: A total of 209 consecutive S. aureus isolates were identified by conventional methods and subjected to antimicrobial susceptibility testing by Kirby-Bauer disk diffusion method. Erythromycin-resistant isolates were tested for D-test. Results: From 1282 clinical specimens, 209 nonrepeated S. aureus isolates were obtained. Majority of isolates 129 (61.7%) were methicillin-resistant S. aureus (MRSA). There was statistically significant difference between outpatients 60.1% and inpatients 39.9% (P < 0.0001). From 209 S. aureus isolates, 46 (22%) were D-test positive (iMLS B phenotype), 41 (19.6%) were D-test negative (methicillin sensitive [MS] phenotype), and 37 (17.7%) were constitutively resistant (constitutive macrolide-lincosamide-streptogramin B phenotype). The incidence of inducible, constitutive, and MS phenotype was higher in MRSA isolates compared to MS S. aureus (MSSA). The constitutive clindamycin resistance difference between MSSA and MRSA isolates were found to be statistically significant (P = 0.0086). Conclusion: The study revealed 22% of S. aureus isolates were inducible clindamycin resistant, which could be easily misidentified as clindamycin susceptible in Kirby-Bauer disk diffusion method. Therefore, clinical microbiology laboratory should routinely perform D-test in all clinically isolated S. aureus to guide clinicians for the appropriate use of clindamycin.



Publication History

Article published online:
09 August 2021

© 2016. Syrian American Medical Society. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Dong J, Qiu J, Wang J, Li H, Dai X, Zhang Y, et al. Apigenin alleviates the symptoms of Staphylococcus aureus pneumonia by inhibiting the production of alpha-hemolysin. FEMS Microbiol Lett 2013;338:124-31.
  • 2 Lertcanawanichakul M, Chawawisit K, Choopan A, Nakbud K, Dawveerakul K. Incidence of constitutive and inducible clindamycin resistance in clinical isolates of methicillin resistant Staphylococcus aureus. Walailak J Sci Technol 2007;4:155-63.
  • 3 Ciraj AM, Vinod P, Sreejith G, Rajani K. Inducible clindamycin resistance among clinical isolates of staphylococci. Indian J Pathol Microbiol 2009;52:49-51.
  • 4 Stevens DL, Gibbons AE, Bergstrom R, Winn V. The eagle effect revisited: Efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis. J Infect Dis 1988;158:23-8.
  • 5 Coyle EA, Lewis RL, Prince RA. Influence of clindamycin on the release of Staphylococcus aureus α haemolysin from methicillin resistant S. aureus: Could MIC make a difference [abstract 182]? Crit Care Med 2003;31 Suppl 1:A48.
  • 6 Saiman L, O′Keefe M, Graham PL 3 rd , Wu F, Saïd-Salim B, Kreiswirth B, et al. Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin Infect Dis 2003;37:1313-9.
  • 7 Juyal D, Shamanth AS, Pal S, Sharma MK, Prakash R, Sharma N. The prevalence of inducible clindamycin resistance among staphylococci in a tertiary care hospital - A study from the Garhwal hills of Uttarakhand, India. J Clin Diagn Res 2013;7:61-5.
  • 8 Jorgensen JH, Crawford SA, McElmeel ML, Fiebelkorn KR. Detection of inducible clindamycin resistance of staphylococci in conjunction with performance of automated broth susceptibility testing. J Clin Microbiol 2004;42:1800-2.
  • 9 Patel M, Waites KB, Moser SA, Cloud GA, Hoesley CJ. Prevalence of inducible clindamycin resistance among community- and hospital-associated Staphylococcus aureus isolates. J Clin Microbiol 2006;44:2481-4.
  • 10 Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. Twenty-second Informational Supplement Document M100-S22. Wayne, PA, USA: CLSI; 2013.
  • 11 Baird P. Staphylococcus: Cluster-forming gram positive cocci. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and McCartney Practical Medical Microbiology. 14 th ed. New York: Churchill Livingstone; 1996. p. 245-61.
  • 12 Banik A, Khyriem AB, Gurung J, Lyngdoh VW. Inducible and constitutive clindamycin resistance in Staphylococcus aureus in a Northeastern Indian tertiary care hospital. J Infect Dev Ctries 2015;9:725-31.
  • 13 Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol 2003;41:4740-4.
  • 14 Prabhu K, Rao S, Rao V. Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. J Lab Physicians 2011;3:25-7.
  • 15 Sah P, Khanal R, Lamichhane P, Upadhaya S, Lamsal A, Pahwa VK. Inducible and constitutive clindamycin resistance in Staphylococcus aureus: An experience from Western Nepal. Int J Biomed Res 2015;6:316-9.
  • 16 Mansouri S, Sadeghi J. Inducible clindamycin resistance in methicillin-resistant and-susceptible Staphylococcus aureus isolated from South East of Iran. Jundishapur J Microbiol 2014;7:e11868.
  • 17 Chudasama V, Solanki H, Vadsmiya M, Vegad MM. Prevalence of inducible clindamycin resistance of Staphylococcus aureus from various clinical specimens by D test in tertiary care hospital. IOSR J Dent Med Sci 2014;13:29-32.
  • 18 Lyall KD, Gupta V, Chhina D. Inducible clindamycin resistance among clinical isolates of Staphylococcus aureus. J Mahatma Gandhi Inst Med Sci 2013;18:112-5.
  • 19 Bottega A, Rodrigues Mde A, Carvalho FA, Wagner TF, Leal IA, Santos SO, et al. Evaluation of constitutive and inducible resistance to clindamycin in clinical samples of Staphylococcus aureus from a tertiary hospital. Rev Soc Bras Med Trop 2014;47:589-92.
  • 20 Sasirekha B, Usha MS, Amruta JA, Ankit S, Brinda N, Divya R. Incidence of constitutive and inducible clindamycin among hospital-associated Staphylococcus aureus. Biotech 2014;4:85-9.
  • 21 Kumurya AS, Ado ZG. Detection of clindamycin resistance among methicillin-resistant Staphylococcus aureus isolates in Kano, Nigeria. Access J Microbiol 2015;1:1-7.
  • 22 Seifi N, Kahani N, Askari E, Mahdipour S, Naderi NM. Inducible clindamycin resistance in Staphylococcus aureus isolates recovered from Mashhad, Iran. Iran J Microbiol 2012;4:82-6.
  • 23 Mokta KK, Verma S, Chauhan D, Ganju SA, Singh D, Kanga A, et al. Inducible clindamycin resistance among clinical isolates of Staphylococcus aureus from sub Himalayan Region of India. J Clin Diagn Res 2015;9:DC20-3.
  • 24 Phukan C, Ahmed GU, Sarma PP. Inducible clindamycin resistance among Staphylococcus aureus isolates in a tertiary care hospital of Assam. Indian J Med Microbiol 2015;33:456-8.
  • 25 Koppada R, Meeniga S, Anke G. Inducible clindamycin resistance among in Staphylococcus aureus isolated from various clinical samples with special reference to MRSA. Sch J Appl Med Sci 2015;3:2374-80.
  • 26 Lall M, Sahni AK. Prevalence of inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Med J Armed Forces India 2014;70:43-7.
  • 27 Kumar S, Bandyopadhyay M, Bhattacharya K, Bandyopadhyay MK, Banerjee P, Pal N, et al. Inducible clindamycin resistance in Staphylococcus isolates from a tertiary care hospital in Eastern India. Ann Trop Public Health 2012;5:468-70.