Subscribe to RSS

DOI: 10.4103/ajns.AJNS_130_19
A novel technique for microcatheter additional shaping during intracranial aneurysmal coil embolization: Microcatheter shaping cast

Background: When a shaping mandrel is inserted into the tip of a preshaped microcatheter, the existing curve becomes uncertain because the tip is straightened by the inner mandrel. Therefore, we developed a way to perform microcatheter shaping by means of an external cast, which we named “microcatheter shaping cast.” Techniques: A shaping mandrel attached to a microcatheter was used and coiled 4–5 times around a metallic introducer, which was attached using a microguidewire. Then, a stent-like handmade cast was prepared. After the microcatheter tip was inserted into the cast, it was manually bent according to the aneurysmal shape and size. The tip and cast were heated with a hot air gun. We evaluated the relationship between degrees of bending and heating time to achieve appropriate right-angled shaping memory. Conclusions: The presented microcatheter shaping method should be more useful than conventional internal shaping, especially in cases that require an additional microcatheter shaping or reshaping during aneurysmal coil embolization.
Financial support and sponsorship
Nil.
Publication History
Article published online:
09 September 2022
© 2019. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Abe T, Hirohata M, Tanaka N, Uchiyama Y, Fujimoto K, Fujimura N, et al. Distal-tip shape-consistency testing of steam-shaped microcatheters suitable for cerebral aneurysm coil placement. AJNR Am J Neuroradiol 2004;25:1058-61.
- 2 Kiyosue H, Hori Y, Matsumoto S, Okahara M, Tanoue S, Sagara Y, et al. Shapability, memory, and luminal changes in microcatheters after steam shaping: A comparison of 11 different microcatheters. AJNR Am J Neuroradiol 2005;26:2610-6.
- 3 Pakbaz RS, Kerber CW. Complex curve microcatheters for berry aneurysm endovascular therapy. AJNR Am J Neuroradiol 2007;28:179-80.
- 4 Park HK, Horowitz M, Jungreis C, Kassam A, Koebbe C, Genevro J, et al. Endovascular treatment of paraclinoid aneurysms: Experience with 73 patients. Neurosurgery 2003;53:14-23.
- 5 Toyota S, Fujimoto Y, Iwamoto F, Wakayama A, Yoshimine T. Technique for shaping microcatheter tips in coil embolization of paraclinoid aneurysms using full-scale volume rendering images of 3D rotational angiography. Minim Invasive Neurosurg 2009;52:201-3.
- 6 Kwon BJ, Im SH, Park JC, Cho YD, Kang HS, Kim JE, et al. Shaping and navigating methods of microcatheters for endovascular treatment of paraclinoid aneurysms. Neurosurgery 2010;67:34-40.
- 7 Namba K, Higaki A, Kaneko N, Mashiko T, Nemoto S, Watanabe E. Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: Preliminary result in the first 10 consecutive cases. World Neurosurg 2015;84:178-86.
- 8 Ohshima T, Imai T, Goto S, Yamamoto T, Nishizawa T, Shimato S, et al. A novel technique of microcatheter shaping with cerebral aneurysmal coil embolization:In vivo printing method. J Neuroendovasc Ther 2017;11:48-52.