Subscribe to RSS

DOI: 10.4103/ajns.AJNS_288_19
Anterior cranial fossa dural arteriovenous fistula with pial arterial supply

Anterior cranial fossa (ACF) dural arteriovenous fistulas (DAVFs) are mainly fed by the ethmoidal arteries and sometimes have pial arterial feeders. DAVFs with pial arterial supply in ACF are extremely rare because most of the reported cases of DAVFs with pial arterial supply are located at the transverse sigmoid sinus and tentorium. A 68-year-old male presented with dizziness. Angiography showed cortical venous reflex (CVR) through an ACF DAVF fed by both bilateral ethmoidal arteries and by the right orbitofrontal artery as a pial feeder. The ethmoidal feeders were disconnected by craniotomy. The pial arterial feeder from the anterior cerebral artery was not found during surgery, and disconnection of the draining vein was not performed. CVR showed a significant reduction after the surgery. After 2 years of follow-up, angiography revealed an increased shunt flow from the pial feeder. Endovascular treatment using n-butyl-2-cyanoacrylate was performed, resulting in the complete occlusion of the fistula. DAVFs with pial supply are reported to carry a high risk of perioperative complications because of the restriction of the venous outflow and retrograde thrombosis of the pial artery. Endovascular pial feeder occlusion after surgical dural arterial feeder disconnection might achieve a safe and effective outcome. With close follow-up, the recurrence of increased shunt flow may be an appropriate timing for additional treatment. This rare condition may offer a new insight into the mechanisms of pial feeder development.
Financial support and sponsorship
Nil.
Publication History
Received: 15 September 2019
Accepted: 11 December 2019
Article published online:
16 August 2022
© 2020. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Halbach VV, Higashida RT, Hieshima GB, Wilson CB, Barnwell SL, Dowd CF. Dural arteriovenous fistulas supplied by ethmoidal arteries. Neurosurgery 1990;26:816-23.
- 2 Kakarla UK, Deshmukh VR, Zabramski JM, Albuquerque FC, McDougall CG, Spetzler RF. Surgical treatment of high-risk intracranial dural arteriovenous fistulae: Clinical outcomes and avoidance of complications. Neurosurgery 2007;61:447-57.
- 3 Brown RD Jr., Wiebers DO, Nichols DA. Intracranial dural arteriovenous fistulae: Angiographic predictors of intracranial hemorrhage and clinical outcome in nonsurgical patients. J Neurosurg 1994;81:531-8.
- 4 Defreyne L, Vanlangenhove P, Vandekerckhove T, Deschrijver I, Sieben G, Klaes R, et al. Transvenous embolization of a dural arteriovenous fistula of the anterior cranial fossa: Preliminary results. AJNR Am J Neuroradiol 2000;21:761-5.
- 5 Agid R, Terbrugge K, Rodesch G, Andersson T, Söderman M. Management strategies for anterior cranial fossa (ethmoidal) dural arteriovenous fistulas with an emphasis on endovascular treatment. J Neurosurg 2009;110:79-84.
- 6 Mack WJ, Gonzalez NR, Jahan R, Vinuela F. Endovascular management of anterior cranial fossa dural arteriovenous malformations. A technical report and anatomical discussion. Interv Neuroradiol 2011;17:93-103.
- 7 Hetts SW, Yen A, Cooke DL, Nelson J, Jolivalt P, Banaga J, et al. Pial artery supply as an anatomic risk factor for ischemic stroke in the treatment of intracranial dural arteriovenous fistulas. AJNR Am J Neuroradiol 2017;38:2315-20.
- 8 Osada T, Krings T. Intracranial dural arteriovenous fistulas with pial arterial supply. Neurosurgery 2019;84:104-15.
- 9 Wu Q, Zhang XS, Wang HD, Zhang QR, Wen LL, Hang CH, et al. Onyx embolization for tentorial dural arteriovenous fistula with pial arterial supply: Case series and analysis of complications. World Neurosurg 2016;92:58-64.
- 10 Sato K, Matsumoto Y, Endo H, Tominaga T. A hemorrhagic complication after Onyx embolization of a tentorial dural arteriovenous fistula: A caution about subdural extension with pial arterial supply. Interv Neuroradiol 2017;23:307-12.
- 11 Tsutsumi S, Shimizu Y, Nonaka Y, Abe Y, Yasumoto Y, Ito M, et al. Arteriovenous fistula arising from the persistent primitive olfactory artery with dual supply from the bilateral anterior ethmoidal arteries. Neurol Med Chir (Tokyo) 2009;49:407-9.
- 12 Matsubara S, Satoh K, Satomi J, Shigekiyo T, Kinouchi T, Miyake H, et al. Acquired pial and dural arteriovenous fistulae following superior sagittal sinus thrombosis in patients with protein S deficiency: A report of two cases. Neurol Med Chir (Tokyo) 2014;54:245-52.
- 13 Mirza FA, Fraser JF. Multiple dural and pial arteriovenous fistulae in a twenty-four-year-old woman in the setting of superior sagittal sinus thrombosis: Case report and review of literature. J Stroke Cerebrovasc Dis 2016;25:e192-9.
- 14 Lai CW, Agid R, van den Berg R, Ter Brugge K. Cerebral arteriovenous fistulas induced by dural arteriovenous shunts. AJNR Am J Neuroradiol 2005;26:1259-62.
- 15 Li Q, Zhang Q, Huang QH, Fang YB, Zhang ZL, Xu Y, et al. A pivotal role of the vascular endothelial growth factor signaling pathway in the formation of venous hypertension-induced dural arteriovenous fistulas. Mol Med Rep 2014;9:1551-8.
- 16 Wang SS, Li CH, Zhang XJ, Wang RM. Investigation of the mechanism of dural arteriovenous fistula formation induced by high intracranial venous pressure in a rabbit model. BMC Neurosci 2014;15:101.
- 17 Zhu Y, Lawton MT, Du R, Shwe Y, Chen Y, Shen F, et al. Expression of hypoxia-inducible factor-1 and vascular endothelial growth factor in response to venous hypertension. Neurosurgery 2006;59:687-96.
- 18 Lawton MT, Chun J, Wilson CB, Halbach VV. Ethmoidal dural arteriovenous fistulae: An assessment of surgical and endovascular management. Neurosurgery 1999;45:805-10.