Open Access
CC BY-NC-ND 4.0 · Indian J Med Paediatr Oncol 2020; 41(04): 488-491
DOI: 10.4103/ijmpo.ijmpo_67_20
Editorial Commentary

Stereotactic Body Radiation Therapy in Hepatocellular Carcinoma

Authors

  • Gagan Saini

    Department of Radiation Oncology, Max Institute of Cancer Care, Delhi NCR, India

Financial support and sponsorship Nil.
Preview

Hepatocellular carcinoma (HCC) is a primary liver cancer believed to originate from primary stem cells.[1] This cancer is increasing in its incidence likely due to the increase in the incidence of chronic hepatitis.[2] The treatment of choice is surgery and therefore every patient must undergo evaluation for surgery. However, most patients present in an inoperable stage[3] and the intent of treatment becomes palliative, an important goal of therapy being preserving the liver function for as long as possible. To achieve this, many liver-directed therapies (LDTs) have come up that can stall tumor progression. These include transarterial chemoembolization (TACE), transarterial radioembolization, radiofrequency ablation (RFA), intra-arterial chemotherapy, targeted drugs (sorafenib and lenvatinib), and IO drugs (nivolumab and pembrolizumab). In this therapeutic armamentarium, stereotactic body radiation therapy (SBRT) is an important addition. There is no specific experimental data that compare and contrast the above-mentioned modalities, and therefore, the treatment offered at most institutions is largely empirical and dependent on expertise and preferences of treating team. In this paper, we attempt to delineate the merits and relative strengths of SBRT for HCC.

SBRT is defined as a method of external beam radiotherapy that accurately delivers a high radiation dose to a target in one or few treatment fractions.[4] It is done by focusing high-energy radiation beams from multiple directions via specialized linear accelerators (Trubeam, Trilogy, Novalis, Edge, Synergy, Cyberknife, and others) that provide precise delivery of dose to prespecified target by shaping of beam perfectly on to the target and by checking for even minor errors in the position of target at the time of radiation delivery by image guidance technology. Typically, SBRT treatment sessions are 3–10 in number, and the dose delivered in each fraction is 5 Gy or more depending on the best compromise reached between radiation dose to the target and normal tissues on the computerized planning system. Smaller the tumor, larger the dose that can be delivered into it without compromising liver function. The aim is to ablate the tumor without damage to the functioning liver tissue.

Let us examine the role of SBRT in various clinical situations with HCC.



Publikationsverlauf

Eingereicht: 17. Februar 2020

Angenommen: 01. Juni 2020

Artikel online veröffentlicht:
17. Mai 2021

© 2020. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/.)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India