RSS-Feed abonnieren

DOI: 10.4103/wjnm.WJNM_77_19
Determination of the optimal cut-off value of serum prostate-specific antigen in the prediction of skeletal metastases on technetium-99m whole-body bone scan by receiver operating characteristic curve analysis

Abstract
Radionuclide whole-body bone scan is a useful investigation of choice to detect the skeletal metastases in prostate cancer. It is indicated in patients having elevated serum prostate-specific antigen (Sr. PSA) or patients with bone pain. Elevated Sr. PSA levels have high predictive value for skeletal metastases; however, there is no consensus regarding cut-off value of Sr. PSA above which bone scan is indicated. This study was performed to find out the accuracy of Sr. PSA test and to know the optimal cut-off value of Sr. PSA with high sensitivity and specificity in the prediction of skeletal metastases on bone scan in prostate cancer patients. A retrospective analysis of medical records of 307 prostate cancer patients referred to the department of nuclear medicine for bone scan between June 2009 and June 2014 was done. Of 307 patients, 15 cases were excluded due to nonavailability of Sr. PSA. Bone scan was performed 3 h after administration of 20 mCi Tc-99m methylene diphosphonate intravenously. Whole-body sweep imaging was performed and spot views were taken wherever required. Of 292 cases, 174 (59.58%) patients had positive bone scan for metastases and 118 (40.41%) patients had negative bone scan for metastases. Maximum and minimum Sr. PSA levels in positive and negative bone scan patients were 1260 and 0.02 ng/ml and 198.34 ng/ml and 0.01 ng/ml, respectively. On comparison of the mean Sr. PSA levels between positive and negative groups, we found significant Sr. PSA levels (P < 0.05). We used receiver operating characteristic (ROC) curve analyses to find out the accuracy of Sr. PSA test and to know the optimal cut-off value of Sr. PSA with maximum sensitivity and specificity in the prediction of skeletal metastases on bone scan. Area under ROC curve was 0.878 (87%). This indicates that the accuracy of Sr. PSA test in the prediction of skeletal metastases on bone scan was good. The optimal cut-off value of Sr. PSA in the prediction of positive bone scan for skeletal metastases in the management of prostate cancer was 29.16 ng/ml, with sensitivity and specificity of 89.0% and 74.6%, respectively. In this study, we conclude that the accuracy of Sr. PSA test in the prediction of skeletal metastases is good. ROC-derived optimal cut-off value of Sr. PSA for positive skeletal metastases on bone scan is >29.16 ng/ml; thus, the chances of getting positive bone scan for skeletal metastasis are less in prostate cancer patients with Sr. PSA <29.16 ng/ml. ROC-derived sensitivity and specificity of different possible cut-off points of Sr. PSA help reduce the false positive results and increase the diagnostic accuracy of bone scan in the detection of skeletal metastases in prostate cancer patients.
Keywords
Prostate cancer - prostate-specific antigen - receiver operating characteristic curve analyses - technetium-99mFinancial support and sponsorship
Nil.
Publikationsverlauf
Eingereicht: 01. November 2019
Angenommen: 10. Februar 2020
Artikel online veröffentlicht:
19. April 2022
© 2020. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.4.
- 2 Jain S, Saxena S, Kumar A. Epidemiology of prostate cancer in India. Meta Gene 2014;2:596-605.
- 3 Catalona WJ, Smith DS, Ornstein DK. Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/mL and benign prostate examination. Enhancement of specificity with free PSA measurements. JAMA 1997;277:1452-5.
- 4 Gandaglia G, Abdollah F, Schiffmann J, Trudeau V, Shariat SF, Kim SP, et al. Distribution of metastatic sites in patients with prostate cancer: A population-based analysis. Prostate 2014;74:210-6.
- 5 Idowu BM. Prostate carcinoma presenting with diffuse osteolytic metastases and supraclavicular lymphadenopathy mimicking multiple myeloma. Clin Case Rep 2018;6:253-7.
- 6 Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: An illustrative review. Radiographics 2003;23:341-58.
- 7 Chybowski FM, Keller JJ, Bergstralh EJ, Oesterling JE. Predicting radionuclide bone scan findings in patients with newly diagnosed, untreated prostate cancer: prostate specific antigen is superior to all other clinical parameters. J Urol 1991;145:313-8.
- 8 Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A, et al. When to perform bone scan in patients with newly diagnosed prostate cancer: External validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol 2010;57:551-8.
- 9 O'Sullivan GJ, Carty FL, Cronin CG. Imaging of bone metastasis: An update. World J Radiol 2015;7:202-11.
- 10 Ling-Huei W, Jainn-Shiun C, Shiou-Ying C, Yuh-Feng W. Predicting bone metastasis in prostate cancer patients: Value of prostate specific antigen. TZU CHI MED J 2008;20:291-5.
- 11 Lin Y, Mao Q, Chen B, Wang L, Liu B, Zheng X, et al. When to perform bone scintigraphy in patients with newly diagnosed prostate cancer? A retrospective study. BMC Urol 2017;17:41.
- 12 Ritenour CW, Abbott JT, Goodman M, Alazraki N, Marshall FF, Issa MM. The utilization of Gleason grade as the primary criterion for ordering nuclear bone scan in newly diagnosed prostate cancer patients. ScientificWorldJournal 2009;9:1040-5.
- 13 Rhoden EL, Torres O, Ramos GZ, Lemos RR, Souto CA. Value of prostate specific antigen in predicting the existence of bone metastasis in scintigraphy. Int Braz J Urol 2003;29:121-5.
- 14 Kosuda S, Yoshimura I, Aizawa T, Koizumi K, Akakura K, Kuyama J, et al. Can initial prostate specific antigen determinations eliminate the need for bone scans in patients with newly diagnosed prostate carcinoma? A multicenter retrospective study in Japan. Cancer 2002;94:964-72.
- 15 Sharma A, Agarwal S, Chauhan MS, Yadav AK, Jain A, Dubey IP et al. Correlation between serum prostate specific antigen levels with incidence of bone metastases in newly diagnosed prostate cancer patients in Indian population. JMSCR 2017;5:18297-303.
- 16 Kamaleshwaran KK, Mittal BR, Harisankar CN, Bhattacharya A, Singh SK, Mandal AK. Predictive value of serum prostate specific antigen in detecting bone metastasis in prostate cancer patients using bone scintigraphy. Indian J Nucl Med 2012;27:81-4.
- 17 Zaman MU, Fatima N, Sajjad Z. Metastasis on bone scan with low prostate specific antigen (≤20 ng/ml) and Gleason's score (<8) in newly diagnosed Pakistani males with prostate cancer: should we follow Western guidelines? Asian Pac J Cancer Prev 2011;12:1529-32.