Hamostaseologie 2014; 34(02): 143-159
DOI: 10.5482/HAMO-13-09-0047
Review
Schattauer GmbH

Comparative genetics of warfarin resistance

Vergleichende Genetik der Warfarinresistanz
J. Oldenburg
1   Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Germany
,
C. R. Müller
2   Institute of Human Genetics, University of Würzburg, Germany
,
S. Rost
2   Institute of Human Genetics, University of Würzburg, Germany
,
M. Watzka
1   Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Germany
,
C. G. Bevans
3   Frankfurt am Main, Germany
› Author Affiliations
Further Information

Publication History

received: 03 September 2013

accepted in revised form: 25 September 2013

Publication Date:
28 December 2017 (online)

Summary

Warfarin and other 4-hydroxycoumarinbased oral anticoagulants targeting vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) are administered to humans, mice and rats with different purposes in mind – to act as pesticides in high-dosage baits for killing rodents, but also to save lives when administered in low dosages as antithrombotic drugs in humans. However, high-dosage warfarin used to control rodent populations has resulted in numerous mutations causing warfarin resistance. Currently, six single missense mutations in mice, 12 distinct missense mutations in rats, as well as compound heterozygous or homozygous mutations with up to six distinct missense mutations per Vkorc1 allele have been described. Warfarin resistance missense mutations for human VKORC1 have also been found world-wide, but differ characteristically from those in rodents. In humans, 26 distinct mutations have been characterized, but occur only rarely either in heterozygous or, even rarer, in homozygous form.

In this review, we summarize the known VKORC1 missense mutations causing warfarin and other 4-hydroxycoumarin drug resistance, identify genomics databases as new sources of data, explore possible underlying genetic mechanisms, and summarize similarities and differences between warfarin resistant VKORC1 variants in humans and rodents.

Zusammenfassung

Warfarin und andere 4-Hydroxycumarin-basierte orale Antikoagulanzien, die VKORC1 (Vitamin-K-2,3-epoxid-Reductase-Komplex Untereinheit 1) inhibieren, werden bei Menschen und den Nagern Maus und Ratte angewandt: als Rodentizid in hoher Dosierung und als antithrombotische Substanzen beim Menschen in niedriger Dosierung. Bald nach der Hochdosisanwendung bei Nagern kam es zu Resistenzen, die durch Mutationen in VKORC1 hervorgerufen werden. Zurzeit sind 6 Missense-Mutationen bei Mäusen, 12 Missense-Mutationen bei Ratten, einschließlich compound heterozygoter oder homozygoter Mutationen mit bis zu 6 Missense-Mutationen pro Vkorc1-Allel bekannt. Ebenfalls wurden weltweit 26 Warfarin-resistente Missense-Mutationen beim Menschen im VKORC1-Gen in heterozygoter, selten in homozygoter Ausprägung beschrieben.

In dieser Übersicht fassen wir die VKORC1-Missense-Mutationen zusammen, die zur Resistenz gegen Warfarin und andere 4-Hydroxycumarine führen. Des Weiteren berichten wir über VKORC1-Varianten in genomischen Datenbanken, Mechanismen der Resistenzentwicklung und vergleichen die zu Warfarin-Resistenz führenden VKORC1-Varianten beim Menschen und bei Nagern.

 
  • References

  • 1 Gratz NG. Societal impact of rodents in rice agriculture. In: Quick GR. editor. odents and rice, report and proceedings of an expert panel meeting on rice rodent control. Manila, Philippines: Internaltional Rice Research Institute; 1990: 17-26.
  • 2 Lack JB, Greene DU, Conroy CJ. et al. Invasion facilitates hybridization with introgression in the Rattus rattus species complex. Mol Ecol 2012; 21: 3545-3561.
  • 3 Gratz NG. Rodents and human disease: a global appreciation. In: Prakash I. editor. Rodent pest management. Baton Rouge: CRC Press; 1988: 101-71.
  • 4 Gratz NG. Rodents as carriers of disease. In: Buckle AP, Smith RH. editors. Rodent pests and their control. Oxon, U.K: CAB International; 1994: 85-108.
  • 5 Link KP. The discovery of dicumarol and its sequels. Circulation 1959; 19: 97-107.
  • 6 Meehan AP. Rats and Mice: Their Biology and Control. East Grinstead, U.K: Rentokill Ltd; 1984
  • 7 Tobin ME, Fall MW. Pest control: Rodents. Encyclopedia of Life Support Systems (EOLSS). Oxford, U.K: Eolss Publishers (UNESCO); 2004. Paper 67.
  • 8 Bellis DM, Spring MS, Stoker JR. The biosynthesis of dicoumarol. Biochem J 1967; 103: 202-206.
  • 9 Campbell HA, Link KP. Studies on the hemorrhagic sweet clover disease. IV. The isolation and crystallization of the hemorrhagic agent. J Biol Chem 1941; 138: 21-33.
  • 10 Dam H. The antihaemorrhagic vitamin of the chick. Biochem J 1935; 29: 1273-1285.
  • 11 Matschiner JT, Bell RG, Amelotti JM, Knauer TE. Isolation and characterization of a new metabolite of phylloquinone in the rat. Biochim Biophys Acta 1970; 201: 309-315.
  • 12 Bell RG, Matschiner JT. Vitamin K activity of phylloquinone oxide. Arch Biochem Biophys 1970; 141: 473-476.
  • 13 Bell RG, Matschiner JT. Warfarin and the inhibition of vitamin K activity by an oxide metabolite. Nature 1972; 237: 32-33.
  • 14 Bell RG, Sadowski JA, Matschiner JT. Mechanism of action of warfarin. Warfarin and metabolism of vitamin K 1. Biochemistry 1972; 11: 1959-1961.
  • 15 Bell RG. Metabolism of vitamin K and prothrombin synthesis: anticoagulants and the vitamin K--epoxide cycle. Fed Proc Amer Soc Exp Biol 1978; 37: 2599-2604.
  • 16 Willingham AK, Matschiner JT. Changes in phylloquinone epoxidase activity related to prothrombin synthesis and microsomal clotting activity in the rat. Biochem J 1974; 140: 435-441.
  • 17 Fasco MJ, Principe LM. R-and S-warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat. J Biol Chem 1982; 257: 4894-4901.
  • 18 Enzyme Nomenclature: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzymes by the reactions they catalyse. Queen May University of London. 2013 [cited 1 August 2013]. www.chem.qmul.ac.uk/iubmb/enzyme/.
  • 19 Sadowski JA, Schnoes HK, Suttie JW. Vitamin K epoxidase: properties and relationship to prothrombin synthesis. Biochemistry 1977; 16: 3856-3863.
  • 20 Wu SM, Morris DP, Stafford DW. Identification and purification to near homogeneity of the vitamin K-dependent carboxylase. Proc Natl Acad Sci USA 1991; 88: 2236-2240.
  • 21 Wu SM, Cheung WF, Frazier D, Stafford DW. Cloning and expression of the cDNA for human gamma-glutamyl carboxylase. Science 1991; 254: 1634-1636.
  • 22 Rost S, Fregin A, Ivaskevicius V. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537-541.
  • 23 Li T, Chang CY, Jin DY. et al. Identification of the gene for vitamin K epoxide reductase. Nature 2004; 427: 541-544.
  • 24 Jin DY, Tie JK, Stafford DW. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines. Biochemistry 2007; 46: 7279-7283.
  • 25 Fregin A, Rost S, Wolz W. et al. Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16. Blood 2002; 100: 3229-3232.
  • 26 Greaves J, Ayres P. Heritable resistance to warfarin in rats. Nature 1967; 215: 877-878.
  • 27 Kohn MH, Pelz HJ. Genomic assignment of the warfarin resistance locus, Rw, in the rat. Mamm Genome 1999; 10: 696-698.
  • 28 Wallace ME, MacSwiney FJ. A major gene controlling warfarin-resistance in the house mouse. J Hyg (Lond) 1976; 76: 173-181.
  • 29 Oldenburg J, von Brederlow B, Fregin A. et al. Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide-reductase-complex. Thromb Haemost 2000; 84: 937-941.
  • 30 Marchetti G, Caruso P, Lunghi B. et al. Vitamin K-induced modification of coagulation phenotype in VKORC1 homozygous deficiency. J Thromb Haemost 2008; 06: 797-803.
  • 31 Oldenburg J, Bevans CG, Muller CR, Watzka M. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle. Antioxid Redox Signal 2006; 08: 347-353.
  • 32 Westhofen P, Watzka M, Marinova M. et al. Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant function. J Biol Chem 2011; 286: 15085-15094.
  • 33 Spohn G, Kleinridders A, Wunderlich FT. et al. VKORC1 deficiency in mice causes early postnatal lethality due to severe bleeding. Thromb Haemost 2009; 101: 1044-1050.
  • 34 Hammed A, Matagrin B, Spohn G. et al. VKORC1L1, an enzyme rescuing the VKOR activity in some extrahepatic tissues during anticoagulation therapy. J Biol Chem. 2013 DOI: 10.1074/jbc.M113.457119.
  • 35 Bevans CG, Krettler C, Reinhart C. et al. Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase complex subunit-1 (VKORC1) using an in vitro DTT-driven assay. Biochim Biophys Acta - Gen Subj 2013; 1830: 4202-4210.
  • 36 Van Horn WD. Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1. Crit Rev Biochem Mol Biol 2013; 48: 357-372.
  • 37 Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease--implications for personalized medicine. Pharmacol Rev 2013; 65: 987-1009.
  • 38 Lee MT, Klein TE. Pharmacogenetics of warfarin: challenges and opportunities. J Hum Genet 2013; 58: 334-338.
  • 39 Wittkowsky AK. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin Vasc Med 2003; 03: 221-230.
  • 40 Ufer M. Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 2005; 44: 1227-1246.
  • 41 Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements--a systematic review and metaanalysis. Eur J Clin Pharmacol 2009; 65: 365-375.
  • 42 Rieder MJ, Reiner AP, Gage BF. et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352: 2285-2293.
  • 43 Geisen C, Watzka M, Sittinger K. et al. VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 2005; 94: 773-779.
  • 44 Poller L, Wright D, Rowlands M. Prospective comparative study of computer programs used for management of warfarin. J Clin Pathol 1993; 46: 299-303.
  • 45 Gage B, Eby C, Johnson J. et al. Use of Pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 2008; 84: 430.
  • 46 Finkelman BS, Gage BF, Johnson JA. et qal. Genetic warfarin dosing: tables versus algorithms. J Am Coll Cardiol 2011; 57: 612-618.
  • 47 Booth SL, Charnley JM, Sadowski JA. et al. Dietary vitamin K1 and stability of oral anticoagulation: proposal of a diet with constant vitamin K1 content. Thromb Haemost 1997; 77: 504-509.
  • 48 Nutescu EA, Shapiro NL, Ibrahim S, West P. Warfarin and its interactions with foods, herbs and other dietary supplements. Expert Opin Drug Saf 2006; 05: 433-451.
  • 49 Anthony M, Romero K, Malone DC. et al. Warfarin interactions with substances listed in drug information compendia and in the FDA-approved label for warfarin sodium. Clin Pharmacol Ther 2009; 86: 425-429.
  • 50 Zhong SL, Yu XY, Liu Y. et al. Integrating interacting drugs and genetic variations to improve the predictability of warfarin maintenance dose in Chinese patients. Pharmacogenet Genomics 2012; 22: 176-182.
  • 51 Chu K, Wu SM, Stanley T. et al. A mutation in the propeptide of Factor IX leads to warfarin sensitivity by a novel mechanism. J Clin Invest 1996; 98: 1619-1625.
  • 52 Oldenburg J, Quenzel EM, Harbrecht U. et al. Missense mutations at ALA-10 in the factor IX propeptide: an insignificant variant in normal life but a decisive cause of bleeding during oral anticoagulant therapy. Br J Haematol 1997; 98: 240-244.
  • 53 Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 2000; 96: 1816-1819.
  • 54 Linder MW. Genetic mechanisms for hypersensitivity and resistance to the anticoagulant Warfarin. Clin Chim Acta 2001; 308: 9-15.
  • 55 Kristensen SR. Warfarin treatment of a patient with coagulation factor IX propeptide mutation causing warfarin hypersensitivity. Blood 2002; 100: 2676-2677.
  • 56 Hermida J, Zarza J, Alberca I. et al. Differential effects of 2C9*3 and 2C9*2 variants of cytochrome P-450 CYP2C9 on sensitivity to acenocoumarol. Blood 2002; 99: 4237-4239.
  • 57 Wadelius M, Chen LY, Eriksson N. et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 2007; 121: 23-34.
  • 58 Wadelius M, Chen LY, Lindh JD. et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 2009; 113: 784-792.
  • 59 Takeuchi F, McGinnis R, Bourgeois S. et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009; 05: e1000433.
  • 60 Perera MA, Cavallari LH, Limdi NA. et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet 2013; 382: 790-796.
  • 61 Daneshjou R, Tatonetti NP, Karczewski KJ. et al. Pathway analysis of genome-wide data improves warfarin dose prediction. BMC Genomics 2013; 14 (Suppl. 03) S11.
  • 62 Voora D, Koboldt DC, King CR. et al. A polymorphism in the VKORC1 regulator calumenin predicts higher warfarin dose requirements in African Americans. Clin Pharmacol Ther 2010; 87: 445-451.
  • 63 D’Andrea G, D’Ambrosio RL, Di Perna P. et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005; 105: 645-649.
  • 64 Wang D, Chen H, Momary KM. et al. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 2008; 112: 1013-1021.
  • 65 Shukla T, Reddy SC, Korrapatti S. et al. A novel VKORC1 promoter mutation found causing warfarin resistance, along with -1639G>A promoter mutation – A pilot study on the genetic variation in patients on warfarin therapy in South India. Biomarkers Genomic Medicine. 2013 http://dx.doi.org/10.1016/j.bgm.2013.05.001.
  • 66 Saito R, Takeda K, Yamamoto K. et al. Nutri-pharmacogenomics of warfarin anticoagulation therapy: VKORC1 genotype-dependent influence of dietary vitamin K intake. J Thromb Thrombolysis. 2013 DOI: 10.1007/s11239–013–0978–9.
  • 67 Rettie AE, Korzekwa KR, Kunze KL. et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 1992; 05: 54-59.
  • 68 Zhang Z, Fasco MJ, Huang Z. et al. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab Dispos 1995; 23: 1339-1346.
  • 69 Wienkers LC, Wurden CJ, Storch E. et al. Formation of (R)-8-hydroxywarfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab Dispos 1996; 24: 610-614.
  • 70 Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717-719.
  • 71 Johnson JA, Gong L, Whirl-Carrillo M. et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 2011; 90: 625-629.
  • 72 Wells PS, Majeed H, Kassem S. et al. A regression model to predict warfarin dose from clinical variables and polymorphisms in CYP2C9, CYP4F2, and VKORC1: Derivation in a sample with predominantly a history of venous thromboembolism. Thromb Res 2010; 125: e259-e264.
  • 73 Oldenburg J, Bevans CG, Fregin A. et al. Current pharmacogenetic developments in oral anticoagulation therapy: the influence of variant VKORC1 and CYP2C9 alleles. Thromb Haemost 2007; 98: 570-578.
  • 74 Dzik WS. Reversal of drug-induced anticoagulation: old solutions and new problems. Transfusion 2012; 52 (Suppl. 01) 45S-55S.
  • 75 Frueh FW. On rat poison and human medicines: personalizing warfarin therapy. Trends Mol Med 2012; 18: 201-205.
  • 76 Patillon B, Luisi P, Blanche H. et al. Positive selection in the chromosome 16 VKORC1 genomic region has contributed to the variability of anticoagulant response in humans. PLoS One 2012; 07: e53049.
  • 77 Boyle CM. Case of apparent resistance of Rattus norvegicus berkenhout to anticoagulant poisons. Nature 1960; 188: 517.
  • 78 Lund M. The toxicity of chlorophacinone and warfarin to house mice (Mus musculus). J Hyg (Lond) 1971; 69: 69-72.
  • 79 O’Reilly RA, Aggeler PM, Hoag MS. et al. Hereditary Transmission of Exceptional Resistance to Coumarin Anticoagulant Drugs. the First Reported Kindred. N Engl J Med 1964; 271: 809-815.
  • 80 O’Reilly RA. The second reported kindred with hereditary resistance to oral anticoagulant drugs. N Engl J Med 1970; 282: 1448-1451.
  • 81 Alving BM, Strickler MP, Knight RD, Barr CF, Berenberg JL, Peck CC. Hereditary warfarin resistance. Investigation of a rare phenomenon. Arch Intern Med 1985; 145: 499-501.
  • 82 Hulse ML. Warfarin resistance: diagnosis and therapeutic alternatives. Pharmacotherapy 1996; 16: 1009-1017.
  • 83 Lefrere JJ, Horellou MH, Conard J, Samama M. Proposed classification of resistances to oral anticoagulant therapy. J Clin Pathol 1987; 40: 242.
  • 84 Watzka M, Geisen C, Bevans CG. et al. Thirteen novel VKORC1 mutations associated with oral anticoagulant resistance: insights into improved patient diagnosis and treatment. J Thromb Haemost 2011; 09: 109-118.
  • 85 Anton AI, Cerezo-Manchado JJ, Padilla J. et al. Novel associations of VKORC1 variants with higher acenocoumarol requirements. PLoS One 2013; 08: e64469.
  • 86 Harrington DJ, Underwood S, Morse C. et al. Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1. Thromb Haemost 2005; 93: 23-26.
  • 87 D’Ambrosio RL, D’Andrea G, Cafolla A. et al. A new vitamin K epoxide reductase complex subunit-1 (VKORC1) mutation in a patient with decreased stability of CYP2C9 enzyme. J Thromb Haemost 2007; 05: 191-193.
  • 88 Bodin L, Perdu J, Diry M. et al. Multiple genetic alterations in vitamin K epoxide reductase complex subunit 1 gene (VKORC1) can explain the high dose requirement during oral anticoagulation in humans. J Thromb Haemost 2008; 06: 1436-1439.
  • 89 Wilms EB, Touw DJ, Conemans JM. et al. A new VKORC1 allelic variant – p.Trp59Arg – in a patient with partial resistance to acenocoumarol and phenprocoumon. J Thromb Haemost 2008; 06: 1224-1226.
  • 90 Peoc’h K, Pruvot S, Gourmel C. et al. A new VKORC1 mutation leading to an isolated resistance to fluindione. Br J Haematol 2009; 30: 30.
  • 91 Schmeits PC, Hermans MH, van Geest-Daalderop JH. et al. VKORC1 mutations in patients with partial resistance to phenprocoumon. Br J Haematol 2010; 148: 955-957.
  • 92 Harrington DJ, Siddiq S, Allford SL. et al. More on: endoplasmic reticulum loop VKORC1 substitutions cause warfarin resistance but do not diminish gamma-carboxylation of the vitamin K-dependent coagulation factors. J Thromb Haemost 2011; 09: 109-118.
  • 93 Mitchell C, Gregersen N, Krause A. Novel CYP2C9 and VKORC1 gene variants associated with warfarin dosage variability in the South African black population. Pharmacogenomics 2011; 12: 953-963.
  • 94 Huff JD, Lawson HL, Harish VC. et al. Warfarin Resistance Due to a Val29Leu Mutation in the VKORC1 Protein. Blood 2005; 106: A4146.
  • 95 Scott SA, Edelmann L, Kornreich R, Desnick RJ. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet 2008; 82: 495-500.
  • 96 Shahin MH, Cavallari LH, Perera MA. et al. VKORC1 Asp36Tyr geographic distribution and its impact on warfarin dose requirements in Egyptians. Thromb Haemost. 2013 109. AUTOR BITTE ERGÄNZEN: SEITEN??)).
  • 97 Osman A, Enstrom C, Arbring K. et al. Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records. J Thromb Haemost 2006; 04: 1723-1729.
  • 98 Pelz HJ, Rost S, Hunerberg M. et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 2005; 170: 1839-1847.
  • 99 Rost S, Pelz HJ, Menzel S. et al. Novel mutations in the VKORC1 gene of wild rats and mice--a response to 50 years of selection pressure by warfarin?. BMC Genet 2009; 10: 4.
  • 100 Song Y, Endepols S, Klemann N. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 2011; 21: 1296-1301.
  • 101 Pelz HJ, Rost S, Muller E. et al. Distribution and frequency of VKORC1 sequence variants conferring resistance to anticoagulants in Mus musculus. Pest Manag Sci 2012; 68: 254-259.
  • 102 Lorusso DJ, Suttie JW. Warfarin binding to microsomes isolated from normal and warfarin-resistant rat liver. Mol Pharmacol 1972; 08: 197-203.
  • 103 Shah DV, Suttie JW. The vitamin K dependent, in vitro production of prothrombin. Biochem Biophys Res Commun 1974; 60: 1397-1402.
  • 104 MacNicoll AD. A comparison of warfarin resistance and liver microsomal vitamin K epoxide reductase activity in rats. Biochim Biophys Acta 1985; 840: 13-20.
  • 105 Thijssen HH. Warfarin resistance. Vitamin K epoxide reductase of Scottish resistance genes is not irreversibly blocked by warfarin. Biochem Pharmacol 1987; 36: 2753-2757.
  • 106 Thijssen HH, Janssen CA, Mosterd JJ. Warfarin resistance: biochemical evaluation of a warfarinresistant wild brown rat. Biochem Pharmacol 1989; 38: 3129-3132.
  • 107 Grandemange A, Lasseur R, Longin-Sauvageon C. et al. Distribution of VKORC1 single nucleotide polymorphism in wild Rattus norvegicus in France. Pest Manag Sci 2010; 66: 270-276.
  • 108 Endepols S, Klemann N, Song Y, Kohn MH. Vkorc1 variation in house mice during warfarin and difenacoum field trials. Pest Manag Sci 2013; 69: 409-413.
  • 109 Staubach F, Lorenc A, Messer PW. et al. Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus). PLoS Genet 2012; 08: e1002891.
  • 110 Baert K, Stuyck J, Breyne P. et al. Distribution of anticoagulant resistance in the brown rat in Belgium. Belg J Zool 2012; 142: 39-48.
  • 111 Tanaka KD, Kawai YK, Ikenaka Y. et al. A novel mutation in VKORC1 and its effect on enzymatic activity in Japanese warfarin-resistant rats. J Vet Med Sci 2013; 75: 135-139.
  • 112 Wang J, Feng Z, Yao D. et al. Warfarin resistance in Rattus losea in Guangdong Province, China. Pesticide Biochem Physiol 2008; 91: 90-95.
  • 113 Tanaka KD, Kawai YK, Ikenaka Y. et al. The genetic mechanisms of warfarin resistance in Rattus rattus found in the wild in Japan. Pest Biochem Physiol 2012; 103: 144-151.
  • 114 Lasseur R, Longin-Sauvageon C, Videmann B. et al. Warfarin resistance in a French strain of rats. J Biochem Mol Toxicol 2005; 19: 379-385.
  • 115 Lasseur R, Grandemange A, Longin-Sauvageon C. et al. Heterogeneity of the coumarin anticoagulant targeted vitamin K epoxide reduction system. Study of kinetic parameters in susceptible and resistant mice (Mus musculus domesticus). J Biochem Mol Toxicol 2006; 20: 221-229.
  • 116 Lasseur R, Longin-Sauvageon C, Berny P, Benoit E. Biochemistry of resistance to warfarin in a French strain of the Norway rat (Rattus norvegicus). Int J Pest Management 2007; 53: 273-280.
  • 117 Czogalla KJ, Biswas A, Wendeln A-C. et al. Human VKORC1 mutations cause variable degrees of 4-hydroxycoumarin resistance and affect putative warfarin binding interfaces. Blood. 2013 doi: 10.1182/blood-2013–05–501692.
  • 118 Levy S, Sutton G, Ng PC. et al. The diploid genome sequence of an individual human. PLoS Biol 2007; 05: e254.
  • 119 Pang AW, MacDonald JR, Pinto D. et al. Towards a comprehensive structural variation map of an individual human genome. Genome Biol 2010; 11: R52.
  • 120 Keane TM, Goodstadt L, Danecek P. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 2011; 477: 289-294.
  • 121 Wang J, Wang W, Li R. et al. The diploid genome sequence of an Asian individual. Nature 2008; 456: 60-65.