Hamostaseologie 2017; 37(03): 202-207
DOI: 10.5482/HAMO-16-07-0020
State of the art
Schattauer GmbH

Pathophysiological insights into the antiphospholipid syndrome

Pathophysiologische Einsichten in das Antiphospholipidsyndrom
Karl J. Lackner
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
2   Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany
,
Davit Manukyan
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
2   Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany
3   Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
,
Nadine Müller-Calleja
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
2   Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany
3   Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 05. Juli 2016

accepted in revised form: 06. Oktober 2016

Publikationsdatum:
28. Dezember 2017 (online)

Summary

The antiphospholipid syndrome (APS) is characterized by venous and/or arterial thrombosis and severe pregnancy morbidity in presence of antiphospholipid antibodies (aPL). While there is compelling evidence that aPL cause the clinical manifestations of APS, the underlying mechanisms are still a matter of scientific debate. This is mainly related to the broad heterogeneity of aPL. There are three major types of aPL: The first one binds to (anionic) phospholipids, e.g. cardiolipin, in absence of other factors (cofactor independent aPL). The second type binds to phospholipids only in presence of protein cofactors, e.g. ß2-glycoprotein I (ß2GPI) (cofactor dependent aPL). The third type binds to cofactor proteins directly without need for phospholipids. It is widely believed that cofactor independent aPL (type 1) are associated with infections and, more importantly, non-pathogenic, while pathogenic aPL belong to the second and in particular to the third type. This view, in particular with regard to type 1 aPL, has not been undisputed and novel research data have shown that it is in fact untenable. We summarize the available data on the pathogenetic role of aPL and the implications for diagnosis of APS and future research.

Zusammenfassung

Das Antiphospholipidsyndrom (APS) ist gekennzeichnet durch venöse und/oder arterielle Thrombosen oder schwerwiegende Schwangerschaftskomplikationen in Anwesenheit von Antiphospholipid-Antikörpern (aPL). Während es überzeugende Belege dafür gibt, dass aPL die klinischen Manifestationen des APS verursachen, sind die zugrundeliegenden Mechanismen – hauptsächlich aufgrund der Heterogenität der aPL – noch wissenschaftlich umstritten. Man kann drei hauptsächliche aPL-Typen unterscheiden: Der erste Typ bindet (anionische) Phospholipide wie z. B. Cardiolipin in Abwesenheit anderer Faktoren (Kofaktor-unabhängige aPL). Der zweite Typ bindet Phospholipide nur in Anwesenheit von Proteinkofaktoren wie z. B. b2-Glykoprotein I (ß2GPI) (Kofaktor-abhängige aPL). Der dritte Typ bindet Kofaktorproteine direkt in Abwesenheit von Phospholipiden. Es wird allgemein angenommen, das Kofaktor- unabhängige aPL (Typ 1) mit Infektionen assoziiert sind und – wichtiger noch – nicht pathogen sind, während pathogene aPL zum zweiten und insbesondere dritten Typ gehören. Diese Vorstellung ist speziell im Hinblick auf Typ 1 aPL nicht unumstritten und neue Forschungsergebnisse zeigen, dass sie wissenschaftlich unhaltbar ist. Wir fassen die verfügbaren Daten zur pathogenetischen Rolle der aPL zusammen und diskutieren deren Konsequenzen für die Diagnose und weitere Erforschung des APS.

 
  • References

  • 1 Wilson WA, Gharavi AE, Koike T. et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum 1999; 42: 1309-1311.
  • 2 Miyakis S, Lockshin MD, Atsumi T. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 04: 295-306.
  • 3 Giannakopoulos B, Krilis SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med 2013; 368: 1033-1044.
  • 4 Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of the antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol 2011; 07: 330-339.
  • 5 Brandt KJ, Kruithof EK, de Moerloose P. Receptors involved in cell activation by antiphospholipid antibodies. Thromb Res 2013; 132: 408-413.
  • 6 Du VX, Kelchtermans H, de Groot PG, de Laat B. From antibody to clinical phenotype, the black box of the antiphospholipid syndrome: pathogenic mechanisms of the antiphospholipid syndrome. Thromb Res 2013; 132: 319-326.
  • 7 Poulton K, Rahman A, Giles I. Examining how antiphospholipid antibodies activate intracellular signaling pathways: a systematic review. Sem Arthritis Rheum 2012; 41: 720-736.
  • 8 Lackner KJ, Müller-Calleja N. Pathogenesis of the antiphospholipid syndrome revisited – time to challenge the dogma. J Thromb Haemost 2016; 14: 1117-1120.
  • 9 Rodríguez-García V, Ioannou Y, Fernández-Nebro A, Isenberg DA, Giles IP. Examining the prevalence of non-criteria anti-phospholipid antibodies in patients with anti-phospholipid syndrome: a systematic review. Rheumatology 2015; 54: 2042-2050.
  • 10 Bertolaccini ML, Amengual O, Atsumi T. et al. „Non-criteria’ aPL tests: report of a task force and preconference workshop at the 13th International Congress on Antiphospholipid Antibodies, Galveston, TX, USA, April 2010. Lupus 2011; 20: 191-205.
  • 11 Von Landenberg C, Lackner KJ, von Landenberg P. et al. Isolation and characterization of two human monoclonal antiphospholipid IgG from patients with autoimmune disease. J Autoimmun 1999; 13: 215-223.
  • 12 Buschmann C, Fischer C, Ochsenhirt V. et al. Generation and characterization of three monoclonal IgM antiphospholipid antibodies recognizing different phospholipid antigens. Ann NY Acad Sci 2005; 1051: 240-254.
  • 13 Prinz N, Häuser F, Lorenz M. et al. Structural and functional characterization of a human IgG monoclonal antiphospholipid antibody. Immunobiology 2011; 216: 145-151.
  • 14 Giles IP, Haley JD, Nagl S. et al. A systematic analysis of sequences of human antiphospholipid and anti-b2-glycoprotein I antibodies: the importance of somatic mutations and certain sequence motifs. Semin Arthritis Rheum 2003; 32: 246-265.
  • 15 McNeil HP, Simpson RJ, Chesterman CN, Krilis SA. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipidbinding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci USA 1990; 87: 4120-4124.
  • 16 Galli M, Comfurius P, Maassen C. et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 1990; 335: 1544-1547.
  • 17 Levy RA, de Meis E, Pierangeli S. An adapted ELISA method for differentiating pathogenic from nonpathogenic aPL by a beta 2 glycoprotein I dependency anticardiolipin assay. Thromb Res 2004; 114: 573-577.
  • 18 Pierangeli SS, Harris EN, Davis SA, DeLorenzo G. Beta 2-glycoprotein 1 (beta 2GP1) enhances cardiolipin binding activity but is not the antigen for antiphospholipid antibodies. Br J Haematol 1992; 82: 565-570.
  • 19 Forastiero RR, Martinuzzo ME, Kordich LC, Carreras LO. Reactivity to beta2 glycoprotein I clearly differentiates anticardiolipin antibodies from antiphospholipid syndrome and syphilis. Thromb Haemost 1996; 75: 717-720.
  • 20 Müller-Calleja N, Köhler A, Siebald B. et al. Cofactor-independent antiphospholipid antibodies activate the NLRP3-inflammasome via endosomal NADPH-oxidase: implications for the antiphospholipid syndrome. Thromb Haemost 2015; 113: 1071-1083.
  • 21 Prinz N, Clemens N, Strand D. et al. Antiphospholipid antibodies induce translocation of TLR7 and TLR8 to the endosome in human monocytes and plasmacytoid dendritic cells. Blood 2011; 118: 2322-2332.
  • 22 Prinz N, Clemens N, Canisius A, Lackner KJ. Endosomal NADPH-oxidase is critical for induction of the tissue factor gene in monocytes and endothelial cells. Lessons from the antiphospholipid syndrome. Thromb Haemost 2013; 109: 525-531.
  • 23 Raschi E, Testoni C, Bosisio D. et al. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood 2003; 101: 3495-3500.
  • 24 Colasanti T, Alessandri C, Capozzi A. et al. Autoantibodies specific to a peptide of beta2-glycoprotein I cross-react with TLR4, inducing a proinflammatory phenotype in endothelial cells and monocytes. Blood 2012; 120: 3360-3370.
  • 25 Ma K, Simantov R, Zhang JC. et al. High affinity binding of beta 2-glycoprotein I to human endothelial cells is mediated by annexin II. J Biol Chem 2000; 275: 15541-15548.
  • 26 Zhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by antiphospholipid/antibeta2 glycoprotein I antibodies. Blood 2005; 105: 1964-1969.
  • 27 Allen KL, Fonseca FV, Betapudi V. et al. A novel pathway for human endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood 2012; 119: 884-893.
  • 28 Lutters BC, Derksen RH, Tekelenburg WL. et al. Dimers of beta 2-glycoprotein I increase platelet deposition to collagen via interaction with phospholipids and the apolipoprotein E receptor 2’. J Biol Chem 2003; 278: 33831-22838.
  • 29 Urbanus RT, Pennings MT, Derksen RH, de Groot PG. Platelet activation by dimeric beta2-glycoprotein I requires signaling via both glycoprotein Ibalpha and apolipoprotein E receptor 2’. J Thromb Haemost 2008; 06: 1405-1412.
  • 30 Pierangeli SS, Liu SW, Anderson G. et al. Thrombogenic properties of murine anti-cardiolipin antibodies induced by beta 2 glycoprotein 1 and human immunoglobulin G antiphospholipid antibodies. Circulation 1996; 94: 1746-1751.
  • 31 Pierangeli SS, Liu XW, Barker JH. et al. Induction of thrombosis in a mouse model by IgG, IgM and IgA immunoglobulins from patients with the antiphospholipid syndrome. Thromb Haemost 1995; 74: 1361-1367.
  • 32 Olee T, Pierangeli SS, Handley HH. et al. A monoclonal IgG anticardiolipin antibody from a patient with the antiphospholipid syndrome is thrombogenic in mice. Proc Natl Acad Sci USA 1996; 93: 8606-8611.
  • 33 Pierangeli SS, Liu X, Espinola R, Olee T. et al. Functional analyses of patient-derived IgG monoclonal anticardiolipin antibodies using in vivo thrombosis and in vivo microcirculation models. Thromb Haemost 2000; 84: 388-395.
  • 34 Manukyan D, Muller-Calleja N, Jackel S. et al. Cofactor Independent Human Antiphospholipid Antibodies Induce Venous Thrombosis in Mice. J Thromb Haemost 2016; 14: 1011-1020.
  • 35 Arad A, Proulle V, Furie RA. et al. beta(2)-Glycoprotein-1 autoantibodies from patients with antiphospholipid syndrome are sufficient to potentiate arterial thrombus formation in a mouse model. Blood 2011; 117: 3453-3459.
  • 36 Pericleous C, Ruiz-Limon P, Romay-Penabad Z. et al. Proof-of-concept study demonstrating the pathogenicity of affinity-purified IgG antibodies directed to domain I of beta2-glycoprotein I in a mouse model of anti-phospholipid antibody-induced thrombosis. Rheumatology (Oxford) 2015; 54: 722-727.
  • 37 Ramesh S, Morrell CN, Tarango C. et al. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via beta2GPI and apoER2. J Clin Invest 2011; 121: 120-131.
  • 38 Vogt E, Ng AK, Rote NS. A model for the antiphospholipid antibody syndrome: monoclonal antiphosphatidylserine antibody induces intrauterine growth restriction in mice. Am J Obstet Gynecol 1996; 174: 700-707.
  • 39 Robertson SA, Roberts CT, van Beijering E. et al. Effect of β2-glycoprotein I null mutation on reproductive outcome and antiphospholipid antibodymediated pregnancy pathology in mice. Mol Hum Reprod 2004; 10: 409-416.
  • 40 Redecha P, Tilley R, Tencati M. et al. Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody-induced fetal injury. Blood 2007; 110: 2423-2431.
  • 41 Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 2004; 11: 1222-1226.
  • 42 Ulrich V, Gelber SE, Vukelic M. et al. ApoE receptor 2 mediation of trophoblast dysfunction and pregnancy complications induced by antiphospholipid antibodies in mice. Arthritis Rheumatol 2016; 68: 730-739.
  • 43 Reynaud Q, Lega J-C, Mismetti P. et al. Risk of venous and arterial thrombosis according to type of antiphospholipid antibodies in adults without systemic lupus erythematosus: A systematic review and meta-analysis. Autoimmun Rev 2014; 13: 595-608.
  • 44 Galli M, Luciani D, Bertolini G, Barbui T. Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: a systematic review of the literature. Blood 2003; 101: 1827-1832.
  • 45 Galli M, Luciani D, Bertolini G, Barbui T. Antibeta 2-glycoprotein I, antiprothrombin antibodies, and the risk of thrombosis in the antiphospholipid syndrome. Blood 2003; 102: 2717-2723.
  • 46 De Laat B, Pengo V, Pabinger I. et al. The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost 2009; 07: 1767-1773.
  • 47 Lockshin MD, Kim M, Laskin CA. et al. Prediction of adverse pregnancy outcome by the presence of lupus anticoagulant, but not anticardiolipin antibody, in patients with antiphospholipid antibodies. Arthritis Rheum 2012; 64: 2311-2318.
  • 48 Yelnik CM, Laskin CA, Porter TF. et al. Lupus anticoagulant is the main predictor of adverse pregnancy outcomes in aPL-positive patients: validation of PROMISSE study results. Lupus Sci Med 2016; 03: e000131.