Hamostaseologie 2012; 32(04): 276-285
DOI: 10.5482/ha-1191
Übersichtsarbeit
Schattauer GmbH

Das Komplementsystem

Ein phylogenetisch altes System als neuer Mitspieler bei der Entstehung der AtheroskleroseComplement – a phylogenetically old system as a new player in the development of atherosclerosis
V. Frauenknecht
1   Universitätsklinik für Hämatologie, Hämostase Forschungslabor, Universitätsspital und Universität Bern, Schweiz
,
V. Schroeder
1   Universitätsklinik für Hämatologie, Hämostase Forschungslabor, Universitätsspital und Universität Bern, Schweiz
› Author Affiliations
Further Information

Publication History

eingegangen: 09 January 2012

angenommen in revidierter Form: 28 February 2012

Publication Date:
28 December 2017 (online)

Summary

Atherosclerotic diseases such as coronary artery disease and ischaemic stroke are caused by chronic inflammation in arterial vessel walls. The complement system is part of the innate immune system. It is involved in many processes contributing to onset and development of atherosclerotic plaques up to the final stage of acute thrombotic events. This is due to its prominent role in inflammatory processes. In addition, there is increasing evidence that interactions between complement and coagulation provide a link between inflammation and thrombosis. On the other hand, the complement system also has an atheroprotective function through the clearance of apoptotic material.

The knowledge of these complex mechanisms will become increasingly important, also for clinicians, since it may lead to novel therapeutic and diagnostic options. Therapies targeting the complement system have the potential to reduce tissue damage caused by acute ischaemic events. Whether early anti-inflammatory and anti-complement therapy may be able to prevent atherosclerosis, remains a hot topic for research.

Zusammenfassung

Atherosklerotisch bedingte Erkrankungen wie koronare Herzkrankheit und ischämischer Schlaganfall sind pathogenetisch auf eine chronische Entzündung in arteriellen Gefäßwänden zurückzuführen. Das Komplementsystem als Teil der angeborenen Immunabwehr ist sowohl für die Entstehung, als auch für die fortschreitende Entwicklung der entzündlichen Plaques bis hin zum Endstadium der Atherothrombose von Bedeutung. Dies ist einerseits begründet in seiner prominenten Rolle bei Entzündungsprozessen; doch es gibt auch immer mehr Evidenz dafür, dass Interaktionen zwischen Komplementsystem und Blutgerinnung eine Verbindung zwischen Entzündung und Thrombose darstellen. Die Rolle des Komplements ist aber keinesfalls nur proatherogen. Aufgrund seiner Beteiligung bei der Beseitigung von apoptotischem Material wird dem Komplementsystem auch eine atheroprotektive Funktion zugeschrieben.

Die Kenntnis dieser komplexen Zusammenhänge wird auch für Kliniker an Bedeutung zunehmen, da sich in Zukunft neue therapeutische und diagnostische Möglichkeiten eröffnen können. Gegen das Komplementsystem gerichtete Therapien haben das Potenzial, die Schäden akuter ischämischer Ereignisse zu vermindern. Ob eine frühzeitige antiinflammatorische und Anti-Komplement-Therapie bereits die Entstehung der Atherosklerose aufhalten kann, bleibt weiter zu erforschen.

 
  • Literatur

  • 1 Allam AH, Thompson RC, Wann LS. et al. Atherosclerosis in ancient Egyptian mummies: the Horus study. JACC Cardiovasc Imaging 2011; 04: 315-327.
  • 2 Fujita T, Matsushita M, Endo Y. The lectin-complement pathway – its role in innate immunity and evolution. Immunol Rev 2004; 198: 185-202.
  • 3 Renz-Polster H, Krautzig S, Braun J. (Hrsg). Basislehrbuch Innere Medizin. München: Urban & Fischer Verlag/Elsevier GmbH; 2004
  • 4 Russel R. Atherosclerosis an inflammatory disease. N Engl J Med 1999; 340: 115-126.
  • 5 Kuvin JT, Kimmelstiel CD. Infectious causes of atherosclerosis. Am Heart J 1999; 137: 216-226.
  • 6 Carter AM. Inflammation, thrombosis and acute coronary syndromes. Diab Vasc Dis Res 2005; 02: 113-121.
  • 7 Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105: 1135-43.
  • 8 Libby P. The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med 2008; 263: 517-527.
  • 9 Choi G, Schultz MJ, Levi M, van der Poll T. The relationsphip between inflammation and the coagulation system. Swiss Med Wkly 2006; 136: 139-144.
  • 10 Ajjan R, Grant PJ. Coagulation and atherothrombotic disease. Atherosclerosis 2006; 186: 240-59.
  • 11 Walport MJ. Complement. First of two parts. N Engl J Med 2001; 344: 1058-1066.
  • 12 Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11: 785-797.
  • 13 Abbas AK, Lichtmann AH. Basic Immunology: functions and disorders of the immune system. Philadelphia: Saunders; 2004
  • 14 Yongqing T, Drentin N, Duncan RC. et al. Mannosebinding lectin serine proteases and associated proteins of the lectin pathway of complement: Two genes, five proteins and many functions?. Biochim Biophys Acta 2012; 1824: 253-262.
  • 15 Walport MJ. Complement. Second of two parts. N Engl J Med 2001; 344: 1140-1144.
  • 16 Fosbrink M, Niculescu F, Rus H. The role of C5b-9 terminal complement complex in activation of the cell cycle and transcription. Immunol Res 2005; 31: 37-46.
  • 17 Oksjoki R, Kovanen PT, Meri S, Pentikainen MO. Function and regulation of the complement system in cardiovascular diseases. Front Biosci 2007; 12: 4696-4708.
  • 18 Speidl WS, Kastl SP, Huber K, Wojta J. Complement in atherosclerosis: friend or foe?. J Thromb Haemost 2011; 09: 428-440.
  • 19 Amara U, Rittirsch D, Flierl M. et al. Interaction between the coagulation and complement system. Adv Exp Med Biol 2008; 632: 71-79.
  • 20 Huber-Lang M, Sarma JV, Zetoune FS. et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 2006; 12: 682-687.
  • 21 Markiewski MM, Nilsson Bo, Ekdahl KN. et al. Complement and coagulation: strangers or partners in crime?. Trends Immunol 2007; 28: 184-192.
  • 22 Krarup A, Wallis R, Presanis JS. et al. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2007; 02: e623.
  • 23 Schroeder V, Hess K, Phoenix F. et al. Complement MBL-associated serine protease-1 (MASP-1) interacts with plasma clot formation - a novel link between inflammation and thrombosis?. Mol Immunol 2011; 48: 1675.
  • 24 Torzewski J, Bowyer DE, Waltenberger J, Fitzsimmons C. Processes in atherogenesis: complement activation. Atherosclerosis 1997; 132: 131-138.
  • 25 Vlaicu R, Rus HG, Niculescu F, Cristea A. Immunglobulins and complement components in human aortic atherosclerotic intima. Atherosclerosis 1985; 55: 35-50.
  • 26 Vlaicu R, Niculescu F, Rus HG, Cristea A. Immunohistochemical localization of the terminal C5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis 1985; 57: 163-177.
  • 27 Seifert PS, Hansson GK. Complement receptors and regulatory proteins in human atherosclerotic lesions. Arteriosclerosis 1989; 09: 802-811.
  • 28 Yasojima K, Schwab C, McGeer EG, McGeer PL. Complement components, but not complement inhibitors, are upregulated in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2001; 21: 1214-1219.
  • 29 Niculescu F, Rus H. The role of complement activation in atherosclerosis. Immunol Res 2004; 30: 73-80.
  • 30 Seifert PS, Hugo F, Hansson GK, Bhakdi S. Prelesional complement activation in experimental atherosclerosis. Terminal C5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits. Lab Invest 1989; 60: 747-754.
  • 31 Oksjoki R, Laine P, Helske S. et al. Receptors for the anaphylatoxins C3a und C5a are expressed in human atherosclerotic coronary plaques. Atherosclerosis 2007; 195: 90-99.
  • 32 Speidl WS, Kastl SP, Hutter R. et al. The complement component C5a ist present in human coronary lesions in vivo and induces the expression of MMP-1 und MMP-9 in human macrophages in vitro. FASEB J 2011; 25: 35-44.
  • 33 Lewis RD, Jackson CL, Morgan BP, Hughes TR. The membrane attack complex of complement drives the progression of atherosclerosis in apolipoprotein E knockout mice. Mol Immunol 2010; 47: 1098-1105.
  • 34 Patel S, Thelander EM, Hernandez M. et al. ApoE(-/-) mice develop atherosclerosis in the absence of complement component C5. Biochim Biophys Res Commun 2001; 286: 164-170.
  • 35 Bhatia VK, Yun S, Leung V. et al. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am J Pathol 2007; 170: 416-426.
  • 36 Matthijsen RA, de Winther MP, Kuipers D. et al. Macrophage-specific expression of mannose-binding lectin controls atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2009; 119: 2188-2195.
  • 37 Buono C, Come CE, Witztum JL. et al. Influence of C3 deficiency on atherosclerosis. Circulation 2002; 105: 3025-3031.
  • 38 Lewis RD, Perry MJ, Guschina IA. et al. CD55 deficiency protects against atherosclerosis in ApoEdeficient mice via C3a modulation of lipid metabolism. Am J Pathol 2011; 179: 1601-1607.
  • 39 Wu G, Hu W, Shahsafaei A. et al. Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circ Res 2009; 104: 550-558.
  • 40 Shagdarsuren E, Bidzhekov K, Djalali-Talab Y. et al. C1-esterase inhibitor protects against neointima formation after arterial injury in atherosclerosisprone mice. Circulation 2008; 117: 70-78.
  • 41 Shagdarsuren E, Bidzhekov K, Mause SF. et al. C5a receptor targeting in neointima formation after arterial injury in atherosclerosis-prone mice. Circulation 2010; 122: 1026-1036.
  • 42 Manthey HD, Thomas AC, Shiels IA. et al. Complement C5a inhibition reduces atherosclerosis in ApoE−/−mice. FASEB 2011; 25: 2447-2455.
  • 43 La LRBonte, Pavlov VI, Tan YS. et al. Mannosebinding lectin-associated serine protease-1 is a significant contributor to coagulation in a murine model of occlusive thrombosis. J Immunol 2012; 188: 885-891.
  • 44 Laine P, Pentikäinen MO, Würzner R. et al. Evidence for complement activation in ruptured coronary plaques in acute myocardial infarction. Am J Cardiol 2002; 90: 404-408.
  • 45 Ajjan R, Grant PJ, Futers TS. et al. Complement C3 and C-reactive protein levels in patients with stable coronary artery disease. Thromb Haemost 2005; 94: 1048-1053.
  • 46 Muscari A, Bozzoli C, Puddu GM. et al. Association of serum C3 levels with the risk of myocardial infarction. Am J Med 1995; 98: 357-364.
  • 47 Engström G, Hedblad B, Eriksson KF. et al. Complement C3 is a risk factor for the development of dia- betes: a population-based cohort study. Diabetes 2005; 54: 570-575.
  • 48 Engström G, Hedblad B, Janzon L, Lindgärde F. Weight gain in relation to plasma levels of complement factor 3: results from a population-based cohort study. Diabetologia 2005; 48: 2525-2531.
  • 49 Speidl WS, Exner M, Amighi J. et al. Complement component C5a predicts future cardiovascular events in patients with advanced atherosclerosis. Eur Heart J 2005; 26: 2294-2299.
  • 50 Speidl WS, Exner M, Amighi J. et al. Complement component C5a predicts restenosis after superficial femoral artery balloon angioplasty. J Endovasc Ther 2007; 14: 62-69.
  • 51 Granger CB, Mahaffey KW, Weaver WD. et al. COMMA Investigators. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMMA trial. Circulation 2003; 108: 1184-1190.
  • 52 Mahaffey KW, Granger CB, Nicolau JC. et al. COMPLY Investigators. Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPLY trial. Circulation 2003; 108: 1176-1183.
  • 53 Verrier ED, Shernan SK, Taylor KM. et al. PRIMOCABG Investigators. Terminal complement blockade with pexelizumab during coronary artery bypass graft surgery requiring cardiopulmonary bypass: a randomized trial. JAMA 2004; 291: 2319-2327.
  • 54 Smith PK, Shernan SK, Chen JC. et al. PRIMOCABG II Investigators. Effects of C5 complement inhibitor pexelizumab on outcome in high-risk coronary artery bypass grafting: combined results from the PRIMO-CABG I and II trials. J Thorac Cardiovasc Surg 2011; 142: 89-98.
  • 55 Cavusoglu E, Eng C, Chopra V. et al. Usefulness of the serum complement component C4 as a predictor of stroke in patients with known or suspected coronary artery disease referred for coronary angiography. Am J Cardiol 2007; 100: 164-168.
  • 56 Engström G, Hedblad B, Janzon L, Lindgärde F. Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a populationbased cohort study. Eur J Cardiovasc Prev Rehabil 2007; 14: 392-397.
  • 57 Pedersen ED, Loberg EM, Vege E. et al. In situ deposition of complement in human acute brain ischaemia. Scand J Immunol 2009; 69: 555-562.
  • 58 Széplaki G, Szegedi R, Hirschberg K. et al. Strong complement activation after acute ischemic stroke is associated with unfavorable outcomes. Atherosclerosis 2009; 204: 315-320.
  • 59 Pedersen ED, Waje-Andreassen U, Vedeler CA. et al. Systemic complement activation following human acute ischaemic stroke. Clin Exp Immunol 2004; 137: 117-122.
  • 60 Mocco J, Wilson DA, Komotar RJ. et al. Alterations in plasma complement levels after human ischemic stroke. Neurosurgery 2006; 59: 28-33.
  • 61 D’Ambrosio AL, Pinsky DJ, Connolly ES. The role of the complement cascade in ischemia/reperfusion injury: implications for neuroprotection. Mol Med 2001; 07: 367-382.
  • 62 Arumugam TV, Woodruff TM, Lathia JD. et al. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 2009; 158: 1074-1089.