RSS-Feed abonnieren

DOI: 10.5935/2526-8732.20210019
Implementing somatic mutation testing in clinical setting: recommendations from a panel of experts.
Implementando testes de mutação somática em ambiente clínico: recomendações de um painel de especialistas.
Financial support: none to declare.

ABSTRACT
There has been a rapid increase in the volume of genomic data gathered from different cancers, this has helped to develop new tumor classifications as well as to select better tailored therapies for the patients. Some of the genomic markers identified are also prognostic and predictive factors. Additionally, many technologies have been used to investigate these alterations, each with different benefits and caveats. The Genomics Committee from the Sociedade Brasileira de Oncologia Clínica (SBOC) put together a group of specialists, from different regions of Brazil that work both in the private and public scenario, to gather and organize the information regarding the utility of somatic mutation testing in solid tumors. This special article summarizes their recommendations on how to better incorporate this information into clinical practice.
Keywords:
Somatic mutation testing - Comprehensive genomic profiling - Genomic medi-cine - Precision oncology.Publikationsverlauf
Eingereicht: 15. Juni 2021
Angenommen: 18. Juni 2021
Artikel online veröffentlicht:
30. Juli 2021
© 2022. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Vladmir Cláudio Cordeiro-de-Lima, Luiz Henrique Araújo, Bernardo Garicochea, Vanderson Rocha, Max Mano, William Nassib William, Aline Lauda Freitas Chaves, Gustavo dos Santos Fernandes, Angelica Nogueira-Rodrigues, Denis Leonardo Jardim, Andreia C Melo, Celso Abdon Mello, Clarissa Serodio Baldotto, Mauro Zukin, Aknar Calabrich, Ana Gelatti, Gilberto deCastro, Thiago Bueno de-Oliveira, Markus Gifoni, Williams Barra, Anelisa K. Coutinho, Renata D'Alpino Peixoto, Carla Rameri de-Azevedo, Eduardo Paulino, José Bines, Romualdo Barroso, Daniel Gimenes, Rafael Aliosha Kaliks, Andre Poisl Fay, Diogo Bugano, Pedro Isaacsson, Carlos Chiattone, Jorge Vaz, Guilherme Duffles, Otavio Baiocchi, Rafael Schmerling, Rodrigo Ramela Munhoz, Rodrigo Guedes, Olavo Feher, Camilla Akemi Felizardo Yamada, Carolina Fittipaldi, Clarissa Maria de Cerqueira Mathias, Renan Orsati Clara, Alesssandro Leal. Implementing somatic mutation testing in clinical setting: recommendations from a panel of experts.. Brazilian Journal of Oncology 2021; 17: e-20210019.
DOI: 10.5935/2526-8732.20210019
-
REFERENCES
- 1
SANGER F..
et al.
Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265 (5596) 687-695 1977;
https://doi.org/10.1038/265687a0
MissingFormLabel
- 2
REDDY E. P.,
REYNOLDS R. K.,
SANTOS E.,
BARBACID M..
A point mutation is responsible for the acquisition of transforming properties by
the T24 human bladder carcinoma oncogene. Nature 300 (5888) 149-152 1982; https://doi.org/10.1038/300149a0
MissingFormLabel
- 3
LYNCH T. J..
et al.
Activating mutations in the epidermal growth factor receptor underlying responsiveness
of non-small-cell lung cancer to gefitinib. The New England journal of medicine 350
(21) 2129-2139 2004; https://doi.org/10.1056/nejmoa040938
MissingFormLabel
- 4
INTERNATIONAL HUMAN GENOME SEQUENCING C.
Finishing the euchromatic sequence of the human genome. Nature 431 (7011) 93145 2004;
https://doi.org/10.1038/nature03001
MissingFormLabel
- 5
MEYERSON M.,
GABRIEL S.,
GETZ G..
Advances in understanding cancer genomes through second-generation sequencing. Nat
Rev Genet 11 (10) 685-696 2010; https://doi.org/10.1038/nrg2841
MissingFormLabel
- 6
MARDIS E. R..
A decade’s perspective on DNA sequencing technology. Nature,; v 470 (7333) 198-203
2011; https://doi.org/10.1038/nature09796
MissingFormLabel
- 7
WAGLE N..
et al.
High-throughput detection of actionable genomic alterations in clinical tumor samples
by targeted, massively parallel sequencing. Cancer discovery 2 (1) 82-93 2012; https://doi.org/10.1158/2159-8290.cd-11-0184
MissingFormLabel
- 8
ROYCHOWDHURY S..
et al.
Personalized oncology through integrative high-throughput sequencing: a pilot study.
Science translational medicine 3 (111) 111ra21 2011; https://doi.org/10.1126/scitranslmed.3003161
MissingFormLabel
- 9
MERIC-BERNSTAM F.,
FARHANGFAR C.,
MENDELSOHN J.,
MILLS G. B..
Building a personalized medicine infrastructure at a major cancer center. Journal
of Clinical Oncology 31 (15) 1849-1857 2013; https://doi.org/10.1200/jco.2012.45.3043
MissingFormLabel
- 10
FRAMPTON G. M..
et al.
Development and validation of a clinical cancer genomic profiling test based on massively
parallel DNA sequencing. Nat Biotechnol 31 (11) 1023-1031 2013; https://doi.org/10.1038/nbt.2696
MissingFormLabel
- 11
KALEMKERIAN G. P..
et al.
Molecular Testing Guideline for the Selection of Patients With Lung Cancer for Treatment
With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement
of the College of American Pathologists/International Association for the Study of
Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update.
Journal of Clinical Oncology 36 (9) 911-919 2018; https://doi.org/10.1200/jco.2017.76.7293
MissingFormLabel
- 12
YOHE S.,
THYAGARAJAN B..
Review of Clinical Next-Generation Sequencing. Archives of pathology & laboratory
medicine 141 (11) 1544-1557 2017; https://doi.org/10.5858/arpa.2016-0501-ra
MissingFormLabel
- 13
SAMORODNITSKY E..
et al.
Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome
Sequencing. Hum Mutat 36 (9) 903-914 2015; https://doi.org/10.1002/humu.22825
MissingFormLabel
- 14
CHANG F.,
LI M. M..
Clinical application of amplicon-based next-generation sequencing in cancer. Cancer
Genet 206 (12) 413-419 2013; https://doi.org/10.1016/j.cancergen.2013.10.003
MissingFormLabel
- 15
KOBOLDT D. C.,
STEINBERG K. M.,
LARSON D. E.,
WILSON R. K.,
MARDIS E. R..
The next-generation sequencing revolution and its impact on genomics. Cell 155 (1)
27-38 2013; https://doi.org/10.1016/j.cell.2013.09.006
MissingFormLabel
- 16
MAMANOVA L..
et al.
Target-enrichment strategies for next-generation sequencing. Nat Methods 7 (2) 111-118
2010; https://doi.org/10.1038/nmeth.1419
MissingFormLabel
- 17
NG S. B..
et al.
Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461
(7261) 272-276 2009; https://doi.org/10.1038/nature08250
MissingFormLabel
- 18
REHM H. L..
et al.
ACMG clinical laboratory standards for next-generation sequencing. Genet Med 15 (9)
733-747 2013; https://doi.org/10.1038/gim.2013.92
MissingFormLabel
- 19
RICHMAN S. D..
et al.
Results of the UK NEQAS for Molecular Genetics reference sample analysis. J Clin Pathol
71 (11) 989-994 2018; http://dx.doi.org/10.1136/jclinpath-2018-205277
MissingFormLabel
- 20
LI M. M..
et al.
Standards and Guidelines for the Interpretation and Reporting of Sequence Variants
in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology,
American Society of Clinical Oncology, and College of American Pathologists. J Mol
Diagn 19 (1) 4-23 2017; https://doi.org/10.1016/j.jmoldx.2016.10.002
MissingFormLabel
- 21
KRIS M. G..
et al.
Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs.
Jama 311 (19) 1998-2006 2014; https://doi.org/10.1001/jama.2014.3741
MissingFormLabel
- 22
LINDEMAN N. I..
et al.
Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for
Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of
American Pathologists, the International Association for the Study of Lung Cancer,
and the Association for Molecular Pathology. Archives of pathology & laboratory medicine
142 (3) 321-346 2018; https://doi.org/10.5858/arpa.2017-0388-cp
MissingFormLabel
- 23
JAMAL-HANJANI M..
et al.
Tracking the Evolution of Non-Small-Cell Lung Cancer. The New England journal of medicine
376 (22) 2109-2121 2017; https://doi.org/10.1056/nejmoa1616288
MissingFormLabel
- 24
ETTINGER D. S..
et al.
NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 1.2020. Journal of the
National Comprehensive Cancer Network 17 (12) 1464-1472 2019; https://doi.org/10.6004/jnccn.2019.0059
MissingFormLabel
- 25
WU Y. L..
et al.
Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. The New England journal
of medicine 383 (18) 1711-1723 2020; https://doi.org/10.1056/nejmoa2027071
MissingFormLabel
- 26
PLANCHARD D..
et al.
Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis,
treatment and follow-up. Annals of oncolog 29 , suppl 4, iv192-iv237 2018; https://doi.org/10.1093/annonc/mdy275
MissingFormLabel
- 27
MOK T. S..
et al.
Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. The New England
journal of medicine 376 (7) 629-640 2017; https://doi.org/10.1056/nejmoa1612674
MissingFormLabel
- 28
MCCUSKER M. G.,
RUSSO A.,
SCILLA K. A.,
MEHRA R.,
ROLFO C..
How I treat ALK-positive non-small cell lung cancer. ESMO open 4 , suppl 2, e000524
2019; https://dx.doi.org/10.1136%2Fesmoopen-2019-000524
MissingFormLabel
- 29
SHAW A. T..
et al.
Crizotinib in ROS1-rearranged non-small-cell lung cancer. The New England journal
of medicine 371 (21) 1963-1971 2014; https://www.nejm.org/doi/full/10.1056/nejmoa1406766
MissingFormLabel
- 30
LI S..
et al.
Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer:
a comprehensive mutation profiling from 5125 Chinese cohorts. British journal of cancer
110 (11) 2812-2820 2014; https://doi.org/10.1038/bjc.2014.210
MissingFormLabel
- 31
LEONETTI A..
et al.
BRAF in non-small cell lung cancer (NSCLC): Pickaxing another brick in the wall. Cancer
treatment reviews 66: 82-94 2018; https://doi.org/10.1016/j.ctrv.2018.04.006
MissingFormLabel
- 32
DRILON A..
et al.
Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. The
New England journal of medicine 378 (8) 7319 2018; https://doi.org/10.1056/nejmoa1714448
MissingFormLabel
- 33
EKMAN S..
HER2: defining a Neu target in nonsmall-cell lung cancer. Annals of oncology 30 (3)
353-355 2019; https://doi.org/10.1093/annonc/mdz043
MissingFormLabel
- 34
DRILON A..
et al.
Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration.
Nature medicine 26 (1) 47-51 2020; https://doi.org/10.1038/s41591-019-0716-8
MissingFormLabel
- 35
GARON E. B..
et al.
Capmatinib in METex14-mutated (mut) advanced non-small cell lung cancer (NSCLC): Results
from the phase II GEOMETRY mono-1 study, including efficacy in patients (pts) with
brain metastases (BM). AACR 2020 80 (16) CT082 2020; https://doi.org/10.1158/1538-7445.AM2020-CT082
MissingFormLabel
- 36
DRILON A..
et al.
Registrational Results of LIBRETTO-001: A Phase 1/2 Trial of LOXO-292 in Patients
with RET Fusion-Positive Lung Cancers. J Thorac Oncol 14 (10) S6-7 2019; https://doi.org/10.1016/j.jtho.2019.08.059
MissingFormLabel
- 37
RECKAMP K. L..
Molecular Targets Beyond the Big 3. Thoracic surgery clinics 30 (2) 157-164 2020;
https://doi.org/10.1016/j.thorsurg.2020.01.004
MissingFormLabel
- 38
DONG L..
et al.
Clinical Next Generation Sequencing for Precision Medicine in Cancer. Current genomics
16 (4) 253-263 2015; https://doi.org/10.2174/1389202915666150511205313
MissingFormLabel
- 39
DANIELS M..
et al.
Whole genome sequencing for lung cancer. Journal of thoracic disease 4 (2) 155-163
2012; https://dx.doi.org/10.3978%2Fj.issn.2072-1439.2012.02.01
MissingFormLabel
- 40
SEQUIST L. V..
et al.
Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical
practice. Annals of oncology 22 (12) 2616-2624 2011; https://doi.org/10.1093/annonc/mdr489
MissingFormLabel
- 41
LEVY B. P..
et al.
Molecular Testing for Treatment of Metastatic Non-Small Cell Lung Cancer: How to Implement
Evidence-Based Recommendations. The oncologist 20 (10) 117581 2015; https://doi.org/10.1634/theoncologist.2015-0114
MissingFormLabel
- 42
PENNEL N. A..
et al.
Economic Impact of Next-Generation Sequencing Versus Single-Gene Testing to Detect
Genomic Alterations in Metastatic Non-Small-Cell Lung Cancer Using a Decision Analytic
Model. JCO Precision Oncology 2019;
MissingFormLabel
- 43
FRANCIS G.,
STEIN S..
Circulating Cell-Free Tumour DNA in the Management of Cancer. International Journal
of Molecular Sciences 16 (6) 14122-42 2015; https://doi.org/10.3390/ijms160614122
MissingFormLabel
- 44
KRISHNAMURTHY N.,
SPENCER E.,
TORKAMANI A.,
NICHOLSON L..
Liquid Biopsies for Cancer: Coming to a Patient near You. Journal of Clinical Medicine
6 (1) 3 2017; https://dx.doi.org/10.3390%2Fjcm6010003
MissingFormLabel
- 45
CHENG F.,
SU L.,
QIAN C..
Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget
7 (30) 48832-41 2016; https://doi.org/10.18632/oncotarget.9453
MissingFormLabel
- 46
SHU Y..
et al.
Circulating Tumor DNA Mutation Profiling by Targeted Next Generation Sequencing Provides
Guidance for Personalized Treatments in Multiple Cancer Types. Scientific reports
7 (1) 583 2017; https://doi.org/10.1038/s41598-017-00520-1
MissingFormLabel
- 47
CHEN K. Z..
et al.
Circulating Tumor DNA Detection in Early-Stage Non-Small Cell Lung Cancer Patients
by Targeted Sequencing. Scientific reports 6: 31985 2016; https://doi.org/10.1038/srep31985
MissingFormLabel
- 48
SCHWAEDERLE M. C..
et al.
Utility of Genomic Assessment of Blood-Derived Circulating Tumor DNA (ctDNA) in Patients
with Advanced Lung Adenocarcinoma. Clinical Cancer Research 23 (17) 5101-5111 2017;
https://doi.org/10.1158/1078-0432.ccr-16-2497
MissingFormLabel
- 49
CHAE Y. K..
et al.
Concordance between genomic alterations assessed by next-generation sequencing in
tumor tissue or circulating cell-free DNA. Oncotarget 7 (40) 65364-73 2016; https://doi.org/10.18632/oncotarget.11692
MissingFormLabel
- 50
LINDEMAN N. I..
et al.
Molecular testing guideline for selection of lung cancer patients for EGFR and ALK
tyrosine kinase inhibitors: guideline from the College of American Pathologists, International
Association for the Study of Lung Cancer, and Association for Molecular Pathology.
Journal of Thoracic Oncology 8 (7) 823-859 2013; https://doi.org/10.1097/jto.0b013e318290868f
MissingFormLabel
- 51
SHOLL L. M..
et al.
ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. The
American Journal of Surgical Pathology 37 (9) 1441-1449 2013; https://doi.org/10.1097/pas.0b013e3182960fa7
MissingFormLabel
- 52
LEEMANS C. R.,
SNIJDERS P. J. F.,
BRAKENHOFF R. H..
The molecular landscape of head and neck cancer. Nat Rev Cancer 18 (5) 269-282 2018;
https://doi.org/10.1038/nrc.2018.11
MissingFormLabel
- 53
MAGHAMI E..
et al.
Diagnosis and Management of Squamous Cell Carcinoma of Unknown Primary in the Head
and Neck: ASCO Guideline. Journal of Clinical Oncology 38 (22) 2570-2596 2020; https://doi.org/10.1200/jco.20.00275
MissingFormLabel
- 54
BURTNESS B..
et al.
Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent
or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised,
open-label, phase 3 study. Lancet 394 , 10.212, 1915-1928 2019; https://doi.org/10.1016/s0140-6736(19)32591-7
MissingFormLabel
- 55
Burtness B,
Rischin D,
Greil R.
et al.
Efficacy of first-line (1L) pembrolizumab by PD-L1 combined positive score <1, 1-19,
and =20 in recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma
(HNSCC): KEYNOTE-048 subgroup analysis. Cancer Res 2020; 80 , 16 Supplement, LB-258-LP-LB-258
MissingFormLabel
- 56
SKALOVA A..
et al.
Mammary analogue secretory carcinoma of salivary glands, containing the ETV6NTRK3
fusion gene: a hitherto undescribed salivary gland tumor entity. The American Journal
of Surgical Pathology 34 (5) 599-608 2010; https://doi.org/10.1097/pas.0b013e3181d9efcc
MissingFormLabel
- 57
BISHOP J. A.,
YONESCU R.,
BATISTA D.,
BEGUM S.,
EISELE D.W.,
WESTRA W. H..
Utility of mammaglobin immunohistochemistry as a proxy marker for the ETV6-NTRK3 translocation
in the diagnosis of salivary mammary analogue secretory carcinoma. Hum Pathol 44 (10)
1982-1988 2013; https://doi.org/10.1016/j.humpath.2013.03.017
MissingFormLabel
- 58
BOON E..
et al.
Clinicopathological characteristics and outcome of 31 patients with ETV6-NTRK3 fusion
gene confirmed (mammary analogue) secretory carcinoma of salivary glands. Oral Oncol
82: 29-33 2018; https://doi.org/10.1016/j.oraloncology.2018.04.022
MissingFormLabel
- 59
URANO M.,
NAGAO T.,
MIYABE S.,
ISHIBASHI K.,
HIGUCHI K.,
KURODA M..
Characterization of mammary analogue secretory carcinoma of the salivary gland: discrimination
from its mimics by the presence of the ETV6-NTRK3 translocation and novel surrogate
markers. Hum Pathol 46 (1) 94-103 2015; https://doi.org/10.1016/j.humpath.2014.09.012
MissingFormLabel
- 60
PENAULT-LLORCA F.,
RUDZINSKI E. R.,
SEPULVEDA A. R..
Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol
72 (7) 460-467 2019; https://doi.org/10.1136/jclinpath-2018-205679
MissingFormLabel
- 61
BRZEZIANSKA E.,
KARBOWNIK M.,
MIGDALSKA-SEK M.,
PASTUSZAK-LEWANDOSKA D.,
WLOCH J.,
LEWINSKI A..
Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma
in the Polish population. Mutat Res 599 , 1–2, 26-35 2006; https://doi.org/10.1016/j.mrfmmm.2005.12.013
MissingFormLabel
- 62
SOLOMON J. P..
et al.
NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications
and pitfalls. Modern pathology 33 (1) 38-46 2020; https://doi.org/10.1038/s41379-019-0324-7
MissingFormLabel
- 63
OKAMURA R.,
BOICHARD A.,
KATO S.,
SICKLICK J. K.,
BAZHENOVA L.,
KURZROCK R..
Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications
for NTRK-Targeted Therapeutics. JCO Precision Oncology 2018;
MissingFormLabel
- 64
STRANSKY N.,
CERAMI E.,
SCHALM S.,
KIM J. L.,
LENGAUER C..
The landscape of kinase fusions in cancer. Nature Communications 5: 4846 2014; https://doi.org/10.1038/ncomms5846
MissingFormLabel
- 65
HECHTMAN J. F..
et al.
Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection
of NTRK Fusions. The American Journal of Surgical Pathology 41 (11) 1547-1551 2017;
https://doi.org/10.1097/pas.0000000000000911
MissingFormLabel
- 66
SOLOMON J. P.,
BENAYED R.,
HECHTMAN J. F.,
LADANYI M..
Identifying patients with NTRK fusion cancer. Annals of Oncology 30 , suppl 8, viii16-viii22
2019; https://doi.org/10.1093/annonc/mdz384
MissingFormLabel
- 67
DOEBELE R. C..
et al.
Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours:
integrated analysis of three phase 1-2 trials. The Lancet Oncology 21 (2) 271-282
2020; https://doi.org/10.1016/s14702045(19)30691-6
MissingFormLabel
- 68
LOCATI L. D..
et al.
Treatment relevant target immunophenotyping of 139 salivary gland carcinomas (SGCs).
Oral Oncol 45 (11) 986-990 2009; https://doi.org/10.1016/j.oraloncology.2009.05.635
MissingFormLabel
- 69
CLAUDITZ T. S..
et al.
Human epidermal growth factor receptor 2 (HER2) in salivary gland carcinomas. Pathology
43 (5) 459-464 2011; https://doi.org/10.1097/pat.0b013e3283484a60
MissingFormLabel
- 70
BOON E..
et al.
A clinicopathological study and prognostic factor analysis of 177 salivary duct carcinoma
patients from The Netherlands. Int J Cancer 143 (4) 758-766 2018; https://doi.org/10.1002/ijc.31353
MissingFormLabel
- 71
GILBERT M. R..
et al.
A 20-Year Review of 75 Cases of Salivary Duct Carcinoma. JAMA Otolaryngol Head Neck
Surg 142 (5) 489-495 2016; https://doi.org/10.1001/jamaoto.2015.3930
MissingFormLabel
- 72
DALIN M. G..
et al.
Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable
Targets and Similarity to Apocrine Breast Cancer. Clinical cancer research 22 (18)
4623-4633 2016; https://doi.org/10.1158/1078-0432.ccr-16-0637
MissingFormLabel
- 73
MASUBUCHI T..
et al.
Clinicopathological significance of androgen receptor, HER2, Ki-67 and EGFR expressions
in salivary duct carcinoma. Int J Clin Oncol 20 (1) 35-44 2015; https://doi.org/10.1007/s10147-014-0674-6
MissingFormLabel
- 74
SHIMURA T..
et al.
Prognostic and histogenetic roles of gene alteration and the expression of key potentially
actionable targets in salivary duct carcinomas. Oncotarget,; v 9 (2) 1852-1867 2018;
https://doi.org/10.18632/oncotarget.22927
MissingFormLabel
- 75
TAKASE S..
et al.
Biomarker immunoprofile in salivary duct carcinomas: clinicopathological and prognostic
implications with evaluation of the revised classification. Oncotarget 8 (35) 59023-35
2017; https://doi.org/10.18632/oncotarget.19812
MissingFormLabel
- 76
DAGRADA G. P..
et al.
HER-2/neu assessment in primary chemotherapy treated breast carcinoma: no evidence
of gene profile changing. Breast Cancer Res Treat 80 (2) 207-214 2003; https://doi.org/10.1023/a:1024579206250
MissingFormLabel
- 77
WOLFF A. C..
et al.
Recommendations for human epidermal growth factor receptor 2 testing in breast cancer:
American Society of Clinical Oncology/College of American Pathologists clinical practice
guideline update. Journal of Clinical Oncology 31 (31) 3997-4013 2013; https://doi.org/10.1200/jco.2013.50.9984
MissingFormLabel
- 78
TAKAHASHI H..
et al.
Phase II Trial of Trastuzumab and Docetaxel in Patients With Human Epidermal Growth
Factor Receptor 2-Positive Salivary Duct Carcinoma. Journal of Clinical Oncology 37
(2) 125-134 2019; https://doi.org/10.1200/jco.18.00545
MissingFormLabel
- 79
LIMAYE S. A..
et al.
Trastuzumab for the treatment of salivary duct carcinoma. The oncologist 18 (3) 294-300
2013; https://doi.org/10.1634/theoncologist.2012-0369
MissingFormLabel
- 80
PERISSINOTTI A. J.,
LEE PIERCE M.,
PACE M. B.,
EL-NAGGAR A.,
KIES M. S.,
KUPFERMAN M..
The role of trastuzumab in the management of salivary ductal carcinomas. Anticancer
Res 33 (6) 2587-2591 2013;
MissingFormLabel
- 81
PARK J. C..
et al.
Exceptional responses to pertuzumab, trastuzumab, and docetaxel in human epidermal
growth factor receptor-2 high expressing salivary duct carcinomas. Head Neck 40 (12)
E100-E6 2018; https://doi.org/10.1002/hed.25392
MissingFormLabel
- 82
KURZROCK R..
et al.
Targeted therapy for advanced salivary gland carcinoma based on molecular profiling:
results from MyPathway, a phase IIa multiple basket study. Annals of Oncology 31 (3)
412-421 2020; https://doi.org/10.1016/j.annonc.2019.11.018
MissingFormLabel
- 83
JHAVERI K. L..
et al.
Ado-trastuzumab emtansine (T-DM1) in patients with HER2-amplified tumors excluding
breast and gastric/gastroesophageal junction (GEJ) adenocarcinomas: results from the
NCI-MATCH trial (EAY131) subprotocol Q. Annals of Oncology 30 (11) 1821-1830 2019;
https://doi.org/10.1093/annonc/mdz291
MissingFormLabel
- 84
SWED B. L.,
COHEN R. B.,
AGGARWAL C..
Targeting HER2/neu Oncogene Overexpression With Ado-Trastuzumab Emtansine in the Treatment
of Metastatic Salivary Gland Neoplasms: A Single-Institution Experience. JCO Precision
Oncology 3 2019;
MissingFormLabel
- 85
TSURUTANI J..
et al.
Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple
Advanced Solid Tumors. Cancer discovery 10 (5) 688-701 2020; https://doi.org/10.1158/2159-8290.cd-19-1014
MissingFormLabel
- 86
HANNA G. J..
et al.
The Benefits of Adjuvant Trastuzumab for HER-2-Positive Salivary Gland Cancers. The
oncologist 25 (7) 598-608 2020; https://doi.org/10.1634/theoncologist.2019-0841
MissingFormLabel
- 87
MITANI Y..
et al.
Alterations associated with androgen receptor gene activation in salivary duct carcinoma
of both sexes: potential therapeutic ramifications. Clinical Cancer Research 20 (24)
6570-6581 2014; https://doi.org/10.1158/1078-0432.ccr-14-1746
MissingFormLabel
- 88
BUTLER R. T.,
SPECTOR M. E.,
THOMAS D.,
MCDANIEL A. S.,
MCHUGH J. B..
An immunohistochemical panel for reliable differentiation of salivary duct carcinoma
and mucoepidermoid carcinoma. Head Neck Pathol 8 (2) 133-140 2014; https://doi.org/10.1007/s12105-013-0493-5
MissingFormLabel
- 89
CROS J..
et al.
Expression and mutational status of treatment-relevant targets and key oncogenes in
123 malignant salivary gland tumours. Annals of Oncology 24 (10) 2624-2629 2013; https://doi.org/10.1093/annonc/mdt338
MissingFormLabel
- 90
WILLIAMS M. D..
et al.
Differential expression of hormonal and growth factor receptors in salivary duct carcinomas:
biologic significance and potential role in therapeutic stratification of patients.
The American Journal of Surgical Pathology 31 (11) 1645-1652 2007; https://doi.org/10.1097/pas.0b013e3180caa099
MissingFormLabel
- 91
LIANG L.,
WILLIAMS M. D.,
BELL D..
Expression of PTEN, Androgen Receptor, HER2/neu, Cytokeratin 5/6, Estrogen Receptor-Beta,
HMGA2, and PLAG1 in Salivary Duct Carcinoma. Head Neck Pathol 13 (4) 529-534 2019;
https://doi.org/10.1007/s12105-018-0984-5
MissingFormLabel
- 92
VISCUSE P. V.,
PRICE K. A.,
GARCIA J. J.,
SCHEMBRI-WISMAYER D. J.,
CHINTAKUNTLAWAR A. V..
First Line Androgen Deprivation Therapy vs. Chemotherapy for Patients With Androgen
Receptor Positive Recurrent or Metastatic Salivary Gland Carcinoma-A Retrospective
Study. Front Oncol 9: 701 2019; https://dx.doi.org/10.3389%2Ffonc.2019.00701
MissingFormLabel
- 93
LOCATI L. D..
et al.
Clinical activity of androgen deprivation therapy in patients with metastatic/relapsed
androgen receptor-positive salivary gland cancers. Head Neck; v 38 (5) 724-731 2016;
https://doi.org/10.1002/hed.23940
MissingFormLabel
- 94
BOON E..
et al.
Androgen deprivation therapy for androgen receptor-positive advanced salivary duct
carcinoma: A nationwide case series of 35 patients in The Netherlands. Head Neck 40
(3) 605-613 2018; https://doi.org/10.1002/hed.25035
MissingFormLabel
- 95
FUSHIMI C..
et al.
A prospective phase II study of combined androgen blockade in patients with androgen
receptor-positive metastatic or locally advanced unresectable salivary gland carcinoma.
Annals of Oncology 29 (4) 979-984 2018; https://doi.org/10.1093/annonc/mdx771
MissingFormLabel
- 96
ISAACSSON VELHO P.
, et al.
Intraductal/ductal histology and lymphovascular invasion are associated with germline
DNA-repair gene mutations in prostate cancer. The Prostate 78 (5) 401-407 2018; https://doi.org/10.1002/pros.23484
MissingFormLabel
- 97
VAN BOXTEL W..
et al.
Adjuvant androgen deprivation therapy for poor-risk, androgen receptor-positive salivary
duct carcinoma. Eur J Cancer 110: 62-70 2019; https://doi.org/10.1016/j.ejca.2018.12.035
MissingFormLabel
- 98
NIKIFOROVA M. N.,
WALD A. I.,
ROY S.,
DURSO M. B.,
NIKIFOROV Y. E.
Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in
thyroid cancer. The Journal of Clinical Endocrinology and Metabolism 98 (11) E1852-60
2013; https://doi.org/10.1210/jc.2013-2292
MissingFormLabel
- 99
YOUNIS E..
Oncogenesis of Thyroid Cancer. Asian Pacific journal of cancer prevention 18 (5) 1191-1199
2017; https://dx.doi.org/10.22034%-2FAPJCP.2017.18.5.1191
MissingFormLabel
- 100
SANDULACHE V. C..
et al.
Real-Time Genomic Characterization Utilizing Circulating Cell-Free DNA in Patients
with Anaplastic Thyroid Carcinoma. Thyroid 27 (1) 81-87 2017; https://doi.org/10.1089/thy.2016.0076
MissingFormLabel
- 101
SUBBIAH V..
et al.
Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic
BRAF V600-Mutant Anaplastic Thyroid Cancer. Journal of Clinical Oncology 36 (1) 7-13
2018; https://doi.org/10.1200/jco.2017.73.6785
MissingFormLabel
- 102
XU X..
et al.
Detection of BRAF V600E mutation in fine-needle aspiration fluid of papillary thyroid
carcinoma by droplet digital PCR. Clinica Chimica Acta 491: 91-96 2019; https://doi.org/10.1016/j.cca.2019.01.017
MissingFormLabel
- 103
LE D. T..
et al.
PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. The New England Journal of
Medicine 372 (26) 2509-2520 2015; https://doi.org/10.1056/nejmoa1500596
MissingFormLabel
- 104
OVERMAN M. J..
et al.
Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite
Instability-High Metastatic Colorectal Cancer. Journal of Clinical Oncology 36 (8)
773-779 2018; https://doi.org/10.1200/jco.2017.76.9901
MissingFormLabel
- 105
MARABELLE A..
et al.
Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch
Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. Journal of Clinical
Oncology 38 (1) 1-10 2020; https://doi.org/10.1200/jco.19.02105
MissingFormLabel
- 106
ANDRE T..
et al.
Pembrolizumab versus chemotherapy for microsatellite instability-high/ mismatch repair
deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 Study. Journal of
Clinical Oncology 38 (18) 2020;
MissingFormLabel
- 107
WANG F..
et al.
Evaluation of POLE and POLD1 Mutations as Biomarkers for Immunotherapy Outcomes Across
Multiple Cancer Types. JAMA oncology 5 (10) 1504-1506 2019; https://doi.org/10.1001/jamaoncol.2019.2963
MissingFormLabel
- 108
SARGENT D. J..
et al.
Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based
adjuvant therapy in colon cancer. Journal of Clinical Oncology 28 (20) 3219-3226 2010;
https://doi.org/10.1200/jco.2009.27.1825
MissingFormLabel
- 109
SMYTH E. C..
et al.
Mismatch Repair Deficiency, Microsatellite Instability, and Survival: An Exploratory
Analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy
(MAGIC) Trial. JAMA oncology 3 (9) 1197-1203 2017; https://doi.org/10.1001/jamaoncol.2016.6762
MissingFormLabel
- 110
CHOI Y. Y..
et al.
Microsatellite Instability and Programmed Cell Death-Ligand 1 Expression in Stage
II/III Gastric Cancer: Post Hoc Analysis of the CLASSIC Randomized Controlled study.
Ann Surg 270 (2) 309-316 2019; https://doi.org/10.1097/sla.0000000000002803
MissingFormLabel
- 111
GATALICA Z.,
XIU J.,
SWENSEN J.,
VRANIC S..
Molecular characterization of cancers with NTRK gene fusions. Modern pathology 32
(1) 147-153 2019; https://doi.org/10.1038/s41379-018-0118-3
MissingFormLabel
- 112
COCCO E..
et al.
Colorectal Carcinomas Containing Hypermethylated MLH1 Promoter and Wild-Type BRAF/KRAS
Are Enriched for Targetable Kinase Fusions. Cancer Res 79 (6) 1047-1053 2019; https://doi.org/10.1158/0008-5472.can-18-3126
MissingFormLabel
- 113
AKIYAMA T.,
SUDO C.,
OGAWARA H.,
TOYOSHIMA K.,
YAMAMOTO T..
The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine
kinase activity. Science 232 (4758) 1644-1646 1986; https://doi.org/10.1126/science.3012781
MissingFormLabel
- 114
VAN CUTSEM E.,
SAGAERT X.,
TOPAL B.,
HAUSTERMANS K.,
PRENEN H..
Gastric cancer. Lancet 388 , 10060, 2654-2664 2016; https://doi.org/10.1016/s0140-6736(16)30354-3
MissingFormLabel
- 115
VAN CUTSEM E.
, et al
HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction
cancer. Gastric Cancer 18 (3) 476-484 2015; https://doi.org/10.1007/s10120-014-0402-y
MissingFormLabel
- 116
SHITARA K..
et al.
Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. The New
England Journal of Medicine 382 (25) 2419-2430 2020;
MissingFormLabel
- 117
JUSAKUL A..
et al.
Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.
Cancer discovery 7 (10) 1116-1135 2017; https://doi.org/10.1158/2159-8290.cd-17-0368
MissingFormLabel
- 118
JAVLE M..
et al.
Biliary cancer: Utility of next-generation sequencing for clinical management. Cancer
122 (24) 3838-3847 2016; https://doi.org/10.1002/cncr.30254
MissingFormLabel
- 119
ABOU-ALFA G. K..
et al.
Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma:
a multicentre, open-label, phase 2 study. The Lancet Oncology 21 (5) 671-684 2020;
https://doi.org/10.1016/S14702045(20)30109-1
MissingFormLabel
- 120
BATTAGLIN F..
et al.
Comprehensive molecular profiling of IDH1/2 mutant biliary cancers (BC). Journal of
Clinical Oncology 38 (4) 479-479 2020;
MissingFormLabel
- 121
ABOU-ALFA G. K..
et al.
Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy):
a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. The Lancet
Oncology 21 (6) 796-807 2020; https://doi.org/10.1016/s1470-2045(20)30157-1
MissingFormLabel
- 122
WAINBERG Z. A..
et al.
Efficacy and safety of dabrafenib (D) and trametinib (T) in patients (pts) with BRAF
V600E-mutated biliary tract cancer (BTC): A cohort of the ROAR basket trial. Journal
of Clinical Oncology 37 (4) 187 2019;
MissingFormLabel
- 123
JAVLE M..
et al.
HER2/neu-directed therapy for biliary tract cancer. J Hematol Oncol 8: 58 2015; https://doi.org/10.1186/s13045-015-0155-z
MissingFormLabel
- 124
MERIC-BERNSTAM F..
et al.
Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway):
an updated report from a multicentre, open-label, phase 2a, multiple basket study.
The Lancet Oncology 20 (4) 518-530 2019; https://doi.org/10.1016/s1470-2045(18)30904-5
MissingFormLabel
- 125
MALUMBRES M.,
BARBACID M..
RAS oncogenes: the first 30 years. Nat Rev Cancer 3 (6) 459-465 2003; https://doi.org/10.1038/nrc1097
MissingFormLabel
- 126
ANDREYEV H. J..
et al.
Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. British
Journal of Cancer 85 (5) 6926 2001; https://doi.org/10.1054/bjoc.2001.1964
MissingFormLabel
- 127
SCHUBBERT S.,
SHANNON K.,
BOLLAG G..
Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7 (4) 295-308
2007; https://doi.org/10.1038/nrc2109
MissingFormLabel
- 128
VAN CUTSEM E.
, et al
Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for
metastatic colorectal cancer: updated analysis of overall survival according to tumor
KRAS and BRAF mutation status. Journal of Clinical Oncology 29 (15) 2011-2019 2011;
https://doi.org/10.1200/jco.2010.33.5091
MissingFormLabel
- 129
DOUILLARD J. Y..
et al.
Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin,
and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients
with previously untreated metastatic colorectal cancer: the PRIME study. Journal of
Clinical Oncology 28 (31) 4697-4705 2010; https://doi.org/10.1200/jco.2009.27.4860
MissingFormLabel
- 130
DOUILLARD J. Y..
et al.
Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. The New England
Journal of Medicine 369 (11) 1023-1034 2013;
MissingFormLabel
- 131
KARAPETIS C. S..
et al.
K-ras mutations and benefit from cetuximab in advanced colorectal cancer. The New
England Journal of Medicine 359 (17) 1757-1765 2008; https://doi.org/10.1056/nejmoa0804385
MissingFormLabel
- 132
AMADO R. G..
et al.
Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal
cancer. Journal of Clinical Oncology 26 (10) 1626-1634 2008; https://doi.org/10.1200/jco.2007.14.7116
MissingFormLabel
- 133
RAJAGOPALAN H.,
BARDELLI A.,
LENGAUER C.,
KINZLER K. W.,
VOGELSTEIN B.,
VELCULESCU V. E.
Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418 (6901) 934
2002; https://doi.org/10.1038/418934a
MissingFormLabel
- 134
SELIGMANN J. F..
et al.
Exploring the poor outcomes of BRAF mutant (BRAF mut) advanced colorectal cancer (aCRC):
Analysis from 2,530 patients (pts) in randomized clinical trials (RCTs). Journal of
Clinical Oncology 33 (15) 3509-3509 2015;
MissingFormLabel
- 135
DE ROOCK W..
et al.
Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus
chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective
consortium analysis. The Lancet Oncology 11 (8) 753-762 2010; https://doi.org/10.1016/s1470-2045(10)70130-3
MissingFormLabel
- 136
LOUPAKIS F..
et al.
Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. The
New England Journal of Medicine 371 (17) 1609-1618 2014; https://doi.org/10.1056/nejmoa1403108
MissingFormLabel
- 137
KOPETZ S..
et al.
Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant
metastatic colorectal cancer (SWOG 1406). Journal of Clinical Oncology 35 (4) 520-520
2017; https://doi.org/10.1200/jco.20.01994
MissingFormLabel
- 138
KOPETZ S..
et al.
Encorafenib plus cetuximab with or without binimetinib for BRAF V600E metastatic colorectal
cancer: Updated survival results from a randomized, three-arm, phase III study versus
choice of either irinotecan or FOLFIRI plus cetuximab (BEACON CRC). Journal of Clinical
Oncology 38 (15) 4001-4001 2020;
MissingFormLabel
- 139
KOPETZ S..
et al.
Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. The
New England Journal of Medicine 381 (17) 1632-1643 2019; https://doi.org/10.1056/nejmoa1908075
MissingFormLabel
- 140
PIETRANTONIO F..
et al.
Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving
cetuximab and panitumumab: a meta-analysis. Eur J Cancer 51 (5) 587-594 2015; https://doi.org/10.1016/j.ejca.2015.01.054
MissingFormLabel
- 141
JONES J. C..
et al.
(Non-V600) BRAF Mutations Define a Clinically Distinct Molecular Subtype of Metastatic
Colorectal Cancer. Journal of Clinical Oncology 35 (23) 2624-2630 2017; https://doi.org/10.1200/jco.2016.71.4394
MissingFormLabel
- 142
SARTORE-BIANCHI A..
et al.
Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS
codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept,
multicentre, open-label, phase 2 trial. The Lancet Oncology 17 (6) 738-746 2016; https://doi.org/10.1016/s1470-2045(16)00150-9
MissingFormLabel
- 143
SIENA S..
et al.
A phase II, multicenter, open-label study of trastuzumab deruxtecan (T-DXd; DS-8201)
in patients (pts) with HER2-expressing metastatic colorectal cancer (mCRC): DESTINY-CRC01.
Journal of Clinical Oncology 38 (15) 4000-4000 2020;
MissingFormLabel
- 144
NCCN.
Uterine neoplasms. 2020 Available at: https://wwwnccnorg/professionals/physician_gls/pdf/uterinepdf
MissingFormLabel
- 145
SGO.
SGO Clinical Practice Statement: screening for lynch syndrome in endometrial cancer.
2014 Available at: https://wwwsgoorg/resources/screening-for-lynch-syndrome-in-endometrial-cancer/
MissingFormLabel
- 146
CANCER GENOME ATLAS RESEARCH NETWORK.
et al.
Integrated genomic characterization of endometrial carcinoma. Nature 497 (7447) 67-73
2013; https://doi.org/10.1038/nature12113
MissingFormLabel
- 147
HECHTMAN J. F..
et al.
Retained mismatch repair protein expression occurs in approximately 6% of microsatellite
instability-high cancers and is associated with missense mutations in mismatch repair
genes. Modern pathology 33 (5) 871-879 2020; https://doi.org/10.1038/s41379-019-0414-6
MissingFormLabel
- 148
TALHOUK A..
et al.
Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial
cancer. Cancer 123 (5) 802-813 2017; https://doi.org/10.1002/cncr.30496
MissingFormLabel
- 149
KOMMOSS S..
et al.
Final validation of the ProMisE molecular classifier for endometrial carcinoma in
a large population-based case series. Annals of Oncology 29 (5) 1180-1188 2018; https://doi.org/10.1093/annonc/mdy058
MissingFormLabel
- 150
STELLOO E..
et al.
Refining prognosis and identifying targetable pathways for high-risk endometrial cancer;
a TransPORTEC initiative. Modern pathology 28 (6) 836-844 2015; https://doi.org/10.1038/modpathol.2015.43
MissingFormLabel
- 151
LE D. T..
et al.
Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science
357 (6349) 409-413 2017; https://doi.org/10.1126/science.aan6733
MissingFormLabel
- 152
KONSTANTINOPOULOS P. A..
et al.
Phase II Study of Avelumab in Patients With Mismatch Repair Deficient and Mismatch
Repair Proficient Recurrent/Persistent Endometrial Cancer. Journal of Clinical Oncology
37 (30) 2786-2794 2019; https://doi.org/10.1200/jco.19.01021
MissingFormLabel
- 153
LIU J. F..
et al.
Safety, clinical activity and biomarker assessments of atezolizumab from a Phase I
study in advanced/recurrent ovarian and uterine cancers. Gynecologic oncology 154
(2) 314-322 2019; https://doi.org/10.1016/j.ygyno.2019.05.021
MissingFormLabel
- 154
OAKNIN A..
et al.
Preliminary safety, efficacy, and PK/PD characterization from GARNET, a phase I clinical
trial of the anti-PD-1 monoclonal antibody, TSR-042, in patients with recurrent or
advanced MSI-H endometrial cancer. ESMO 29 (8) VIII334 2018; https://doi.org/10.1093/annonc/mdy285.144
MissingFormLabel
- 155
WORTMAN B. G..
et al.
Ten-year results of the PORTEC-2 trial for high-intermediate risk endometrial carcinoma:
improving patient selection for adjuvant therapy. British Journal of Cancer 119 (9)
1067-1074 2018; https://doi.org/10.1038/s41416-018-0310-8
MissingFormLabel
- 156
FADER A. N..
et al.
Randomized Phase II Trial of Carboplatin-Paclitaxel Versus Carboplatin-Paclitaxel-Trastuzumab
in Uterine Serous Carcinomas That Overexpress Human Epidermal Growth Factor Receptor
2/neu. Journal of Clinical Oncology 36 (20) 2044-2051 2018; https://doi.org/10.1200/jco.2017.76.5966
MissingFormLabel
- 157
FADER A. N..
et al.
Randomized phase II trial of carboplatin-paclitaxel compared to carboplatin-paclitaxel-trastuzumab
in advanced or recurrent uterine serous carcinomas that overexpress Her2/neu (NCT01367002):
Updated survival analysis. . SGO 2020 Available at: https://sgoconfexcom/sgo/2020/meetingappcgi/Paper/16297
MissingFormLabel
- 158
THIGPEN J. T..
et al.
Oral medroxyprogesterone acetate in the treatment of advanced or recurrent endometrial
carcinoma: a dose-response study by the Gynecologic Oncology Group. Journal of Clinical
Oncology 17 (6) 1736-1744 1999; https://doi.org/10.1200/jco.1999.17.6.1736
MissingFormLabel
- 159
DECRUZE S. B.,
GREEN J. A.
Hormone therapy in advanced and recurrent endometrial cancer: a systematic review.
International Journal of Gynecological Cancer 17 (5) 964-978 2007; https://doi.org/10.1111/j.1525-1438.2007.00897.x
MissingFormLabel
- 160
COLOMBO N..
et al.
ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and
follow-up. Annals of oncology 27 (1) 16-41 2016; https://doi.org/10.1093/annonc/mdv484
MissingFormLabel
- 161
EL GHONAIMY E.
, et al
Serum gastrin in chronic renal failure: morphological and physiological correlations.
Nephron 39 (2) 86-94 1985; https://doi.org/10.1159/000183350
MissingFormLabel
- 162
MOSCHETTA M.,
GEORGE A.,
KAYE S. B.,
BANERJEE S..
BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer.
Annals of Oncology 27 (8) 1449-1455 2016; https://doi.org/10.1093/annonc/mdw142
MissingFormLabel
- 163
MOORE K..
et al.
Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. The
New England Journal of Medicine 379 (26) 2495-2505 2018; https://doi.org/10.1056/nejmoa1810858
MissingFormLabel
- 164
GONZALEZ-MARTIN A..
et al.
Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. The New England
Journal of Medicine 381 (25) 2391-2402 2019; https://doi.org/10.1056/nejmoa1910962
MissingFormLabel
- 165
COLEMAN R. L..
et al.
Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer.
The New England Journal of Medicine 381 (25) 2403-2415 2019;
MissingFormLabel
- 166
RAY-COQUARD I..
et al.
Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. The New England
Journal of Medicine 381 (25) 2416-2428 2019; https://doi.org/10.1056/nejmoa1911361
MissingFormLabel
- 167
PUJADE-LAURAINE E..
et al.
Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed
ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised,
placebo-controlled, phase 3 trial. The Lancet Oncology 18 (9) 1274-1284 2017; https://doi.org/10.1016/s1470-2045(17)30469-2
MissingFormLabel
- 168
LEDERMANN J..
et al.
Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. The New
England Journal of Medicine 366 (15) 1382-1392 2012;
MissingFormLabel
- 169
COLEMAN R. L..
et al.
Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to
platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3
trial. Lancet 390 , 10106 1949-1961 2017; https://doi.org/10.1016/s0140-6736(17)32440-6
MissingFormLabel
- 170
NCCN.
Ovarian cancer. 2020 Available at: https://wwwnccnorg/professionals/physician_gls/pdf/ovarianpdf
MissingFormLabel
- 171
LEDERMANN J. A..
et al.
Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO clinical practice
guidelines. Ann Oncol 24 , suppl 6, vi24vi32 2013; https://doi.org/10.1093/annonc/mdt333
MissingFormLabel
- 172
KONSTANTINOPOULOS P. A..
et al.
Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline. Journal
of Clinical Oncology 38 (11) 1222-1245 2020; https://doi.org/10.1200/jco.19.02960
MissingFormLabel
- 173
BERTUCCI F..
et al.
Genomic characterization of metastatic breast cancers. Nature 569 (7757) 560-564 2019;
https://doi.org/10.1038/s41586-019-1056-z
MissingFormLabel
- 174
LI A.,
SCHLEICHER S. M.,
ANDRE F.,
MITRI Z. I..
Genomic Alteration in Metastatic Breast Cancer and Its Treatment. American Society
of Clinical Oncology educational book 40: 1-14 2020; https://doi.org/10.1200/edbk_280463
MissingFormLabel
- 175
CONDORELLI R..
et al.
Genomic alterations in breast cancer: level of evidence for actionability according
to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Annals of Oncology
30 (3) 365-373 2019; https://doi.org/10.1093/annonc/mdz036
MissingFormLabel
- 176
MOASSER M. M.,
KROP I. E..
The Evolving Landscape of HER2 Targeting in Breast Cancer. JAMA oncology 1 (8) 1154-1161
2015; https://doi.org/10.1001/jamaoncol.2015.2286
MissingFormLabel
- 177
ANDRE F..
et al.
Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. The
New England Journal of Medicine 380 (20) 1929-1940 2019; https://doi.org/10.1056/nejmoa1813904
MissingFormLabel
- 178
CORTES-CIRIANO I.,
LEE S.,
PARK W. Y.,
KIM T. M.,
PARK P. J..
A molecular portrait of microsatellite instability across multiple cancers. Nature
communications 8: 15180 2017; https://doi.org/10.1038/ncomms15180
MissingFormLabel
- 179
MARCUS L.,
LEMERY S. J.,
KEEGAN P.,
PAZDUR R..
FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High
Solid Tumors. Clinical Cancer Research 25 (13) 3753-3758 2019; https://doi.org/10.1158/1078-0432.ccr-18-4070
MissingFormLabel
- 180
AMATU A.,
SARTORE-BIANCHI A.,
SIENA S..
NTRK gene fusions as novel targets of cancer therapy across multiple tumour types.
ESMO open 1 (2) e000023 2016; https://doi.org/10.1136/esmoopen-2015-000023
MissingFormLabel
- 181
ROSS J. S..
et al.
NTRK fusions in breast cancer: Clinical, pathologic and genomic findings. Cancer Res
78 (4) P2-09-15 2018; https://doi.org/10.1158/1538-7445.SABCS17-P2-09-15
MissingFormLabel
- 182
COCCO E.,
SCALTRITI M.,
DRILON A..
NTRK fusion-positive cancers and TRK inhibitor therapy. Nature Reviews Clinical oncology
15 (12) 731-747 2018; https://doi.org/10.1038/s41571-018-0113-0
MissingFormLabel
- 183 FDA approves pembrolizumab for adults and children with TMB-H solid tumors. 2020
Available at: https://wwwfdagov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors
MissingFormLabel
- 184
BARROSO-SOUSA R..
et al.
Prevalence and mutational determinants of high tumor mutation burden in breast cancer.
Annals of Oncology 31 (3) 387-394 2020; https://doi.org/10.1016/j.annonc.2019.11.010
MissingFormLabel
- 185
ANGUS L..
et al.
The genomic landscape of metastatic breast cancer highlights changes in mutation and
signature frequencies. Nature genetics 51 (10) 1450-1458 2019; https://doi.org/10.1038/s41588-019-0507-7
MissingFormLabel
- 186
WINER E..
et al.
Association of tumor mutational burden (TMB) and clinical outcomes with pembrolizumab
(pembro) versus chemotherapy (chemo) in patients with metastatic triple-negative breast
cancer (mTNBC) from KEYNOTE-119. Journal of Clinical Oncology 38 (15) 1013 2020;
MissingFormLabel
- 187
BARROSO-SOUSA R..
et al.
Tumor Mutational Burden and PTEN Alterations as Molecular Correlates of Response to
PD-1/L1 Blockade in Metastatic Triple-Negative Breast Cancer. Clinical Cancer Research
26 (11) 2565-2572 2020; https://doi.org/10.1158/1078-0432.ccr-19-3507
MissingFormLabel
- 188
ALVA A. S..
et al.
Pembrolizumab (P) in patients (pts) with metastatic breast cancer (MBC) with high
tumor mutational burden (HTMB): Results from the Targeted Agent and Profiling Utilization
Registry (TAPUR) Study. Journal of Clinical Oncology 37 (15) 1014 2019;
MissingFormLabel
- 189
ROBSON M..
et al.
Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. The
New England Journal of Medicine 377 (6) 523-533 2017; https://doi.org/10.1056/nejmoa1706450
MissingFormLabel
- 190
LITTON J. K..
et al.
Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
The New England Journal of Medicine 379 (8) 753-763 2018; https://doi.org/10.1056/nejmoa1802905
MissingFormLabel
- 191
TUTT A..
et al.
Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups:
the TNT Trial. Nature medicine 24 (5) 628-637 2018; https://doi.org/10.1038/s41591-018-0009-7
MissingFormLabel
- 192
TUNG N. M..
et al.
TBCRC 048: A phase II study of olaparib monotherapy in metastatic breast cancer patients
with germline or somatic mutations in DNA damage response (DDR) pathway genes (Olaparib
Expanded). Journal of Clinical Oncology 38 (15) 1002 2020; https://doi.org/10.1200/jco.20.02151
MissingFormLabel
- 193
LIN N. U..
et al.
Tucatinib versus placebo added to trastuzumab and capecitabine for patients with previously
treated HER2+ metastatic breast cancer with brain metastases (HER2CLIMB). Journal
of Clinical Oncology 38 (15) 1005 2020;
MissingFormLabel
- 194
ROSS J. S..
et al.
Nonamplification ERBB2 genomic alterations in 5605 cases of recurrent and metastatic
breast cancer: An emerging opportunity for anti-HER2 targeted therapies. Cancer 122
(17) 2654-2662 2016; https://doi.org/10.1002/cncr.30102
MissingFormLabel
- 195
SMYTH L. M..
et al.
Efficacy and Determinants of Response to HER Kinase Inhibition in HER2-Mutant Metastatic
Breast Cancer. Cancer discovery 10 (2) 198-213 2020; https://doi.org/10.1158/2159-8290.CD-19-0966
MissingFormLabel
- 196
LE TOURNEAU C..
et al.
Molecularly targeted therapy based on tumour molecular profiling versus conventional
therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept,
randomised, controlled phase 2 trial. The Lancet Oncology 16 (13) 1324-1334 2015;
https://doi.org/10.1016/s1470-2045(15)00188-6
MissingFormLabel
- 197
ANDRE F..
et al.
Comparative genomic hybridisation array and DNA sequencing to direct treatment of
metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). The
Lancet Oncology 15 (3) 267-274 2014; https://doi.org/10.1016/s1470-2045(13)70611-9
MissingFormLabel
- 198
MASSARD C..
et al.
High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results
of the MOSCATO 01 Trial. Cancer discovery 7 (6) 586-595 2017; https://doi.org/10.1158/2159-8290.cd-16-1396
MissingFormLabel
- 199
CARDOSO F..
et al.
4th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4)dagger.
Annals of Oncology 29 (8) 1634-1657 2018; https://doi.org/10.1093/annonc/mdy192
MissingFormLabel
- 200
EGGENER S. E..
et al.
Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. Journal of Clinical
Oncology 38 (13) 1474-1494 2020;
MissingFormLabel
- 201
MOHLER J. L..
et al.
Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. Journal
of the National Comprehensive Cancer Network 17 (5) 479-505 2019; https://doi.org/10.6004/jnccn.2019.0023
MissingFormLabel
- 202
DEN R. B..
et al.
Decipher correlation patterns post prostatectomy: initial experience from 2 342 prospective
patients. Prostate cancer and prostatic diseases 19 (4) 374-379 2016; https://doi.org/10.1038/pcan.2016.38
MissingFormLabel
- 203
CHANG E. M.,
PUNGLIA R. S.,
STEINBERG M. L.,
RALDOW A. C..
Cost Effectiveness of the Oncotype DX Genomic Prostate Score for Guiding Treatment
Decisions in Patients With Early Stage Prostate Cancer. Urology 126: 89-95 2019; https://doi.org/10.1016/j.urology.2018.12.016
MissingFormLabel
- 204
HEALTH QUALITY O.
Prolaris Cell Cycle Progression Test for Localized Prostate Cancer: A Health Technology
Assessment. Ontario Health Technology Assessment Series 17 (6) 1-75 2017;
MissingFormLabel
- 205
CASTRO E..
et al.
Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical
Treatment for Localised Prostate Cancer. European urology 68 (2) 186-193 2015; https://doi.org/10.1016/j.eururo.2014.10.022
MissingFormLabel
- 206
CASTRO E..
et al.
Germline BRCA mutations are associated with higher risk of nodal involvement, distant
metastasis, and poor survival outcomes in prostate cancer. Journal of Clinical Oncology
31 (14) 1748-1757 2013; https://doi.org/10.1200/jco.2012.43.1882
MissingFormLabel
- 207
RODRIGUES D. N..
et al.
Immunogenomic analyses associate immunological alterations with mismatch repair defects
in prostate cancer. The Journal of clinical investigation 128 (10) 4441-4453 2018;
https://doi.org/10.1172/jci121924
MissingFormLabel
- 208
MARSHALL C. H.,
FU W.,
WANG H.,
BARAS A. S.,
LOTAN T. L,
ANTONARAKIS E. S.
Prevalence of DNA repair gene mutations in localized prostate cancer according to
clinical and pathologic features: association of Gleason score and tumor stage. Prostate
cancer and prostatic diseases 22 (1) 59-65 2019; https://doi.org/10.1038/s41391-018-0086-1
MissingFormLabel
- 209
ISAACSSON VELHO P.
, et al
Molecular Characterization and Clinical Outcomes of Primary Gleason Pattern 5 Prostate
Cancer After Radical Prostatectomy. JCO Precision Oncology 3 2019;
MissingFormLabel
- 210
ROBINSON D..
et al.
Integrative clinical genomics of advanced prostate cancer. Cell 161 (5) 1215-1228
2015; https://doi.org/10.1016/j.cell.2015.05.001
MissingFormLabel
- 211
PRITCHARD C. C..
et al.
Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. The New
England Journal of Medicine 375 (5) 443-453 2016;
MissingFormLabel
- 212
MATEO J..
et al.
DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. The New England Journal
of Medicine 373 (18) 1697-1708 2015;
MissingFormLabel
- 213
DE BONO J..
et al.
Olaparib for Metastatic Castration-Resistant Prostate Cancer. The New England Journal
of Medicine 382 (22) 2091-2102 2020; https://doi.org/10.1056/nejmoa1911440
MissingFormLabel
- 214
HUSSAIN M..
et al.
Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate
Cancer: Results From NCI 9012. Journal of Clinical Oncology 36 (10) 991-999 2018;
https://doi.org/10.1200/jco.2017.75.7310
MissingFormLabel
- 215
HUSSAIN M..
et al.
Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. The New
England Journal of Medicine 383 (24) 2345-2357 2020; https://doi.org/10.1056/nejmoa2022485
MissingFormLabel
- 216
ISAACSSON VELHO P.
, et al
Efficacy of Radium-223 in Bone-metastatic Castration-resistant Prostate Cancer with
and Without Homologous Repair Gene Defects. European urology 76 (2) 170-176 2019;
https://doi.org/10.1016/j.eururo.2018.09.040
MissingFormLabel
- 217
DOELEN M. J..
et al.
Overall survival using radium-223 (Ra223) in metastatic castrate-resistant prostate
cancer (mCRPC) patients with and without DNA damage repair (DDR) defects. Journal
of Clinical Oncology 38 (6) 121-121 2020;
MissingFormLabel
- 218
MOTA J. M..
et al.
Platinum-Based Chemotherapy in Metastatic Prostate Cancer With DNA Repair Gene Alterations.
JCO Precision Oncology 4: 355-366 2020; https://doi.org/10.1200/po.19.00346
MissingFormLabel
- 219
ANTONARAKIS E. S..
et al.
Clinical Features and Therapeutic Outcomes in Men with Advanced Prostate Cancer and
DNA Mismatch Repair Gene Mutations. European urology 75 (3) 378-382 2019; https://doi.org/10.1016/j.eururo.2018.10.009
MissingFormLabel
- 220
WU Y. M..
et al.
Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate
Cancer. Cell 173 (7) 1770-1782 , e14 2018; https://doi.org/10.1016/j.cell.2018.04.034
MissingFormLabel
- 221
SCHWEIZER M. T..
et al.
CDK12-Mutated Prostate Cancer: Clinical Outcomes With Standard Therapies and Immune
Checkpoint Blockade. JCO precision oncology,; v 4: 382-392 2020; https://doi.org/10.1200/PO.19.00383
MissingFormLabel
- 222
ISAACSSON y P.
, et al
Wnt-pathway Activating Mutations Are Associated with Resistance to First-line Abiraterone
and Enzalutamide in Castration-resistant Prostate Cancer. European urology 77 (1)
14-21 2020; https://doi.org/10.1016/j.eururo.2019.05.032
MissingFormLabel
- 223
MAUGHAN B. L..
et al.
p53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide
in castration-resistant prostate cancer. Prostate cancer and prostatic diseases 21
(2) 260-268 2018; https://doi.org/10.1038/s41391-017-0027-4
MissingFormLabel
- 224
CARREIRA S..
et al.
Tumor clone dynamics in lethal prostate cancer. Science translational medicine 6 (254)
254ra125 2014; https://doi.org/10.1126/scitranslmed.3009448
MissingFormLabel
- 225
FERRALDESCHI R..
et al.
PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated
with abiraterone acetate. European urology 67 (4) 795-802 2015; https://doi.org/10.1016/j.eururo.2014.10.027
MissingFormLabel
- 226
LORIOT Y..
et al.
Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. The New England
Journal of Medicine 381 (4) 338-348 2019; https://doi.org/10.1056/nejmoa1817323
MissingFormLabel
- 227
BALAR A. V..
et al.
First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and
unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm,
phase 2 study. The Lancet Oncology 18 (11) 1483-1492 2017; https://doi.org/10.1016/s1470-2045(17)30616-2
MissingFormLabel
- 228
BALAR A. V..
et al.
Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally
advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial.
Lancet 389 , 10064 67-76 2017; https://doi.org/10.1016/s0140-6736(16)32455-2
MissingFormLabel
- 229
LYAGIN I. V.,
ANDRIANOVA M. S.,
EFREMENKO E. N..
Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus
hydrolase. Appl Microbiol Biotechnol 100 (13) 5829-5838 2016; https://doi.org/10.1007/s00253-016-7407-x
MissingFormLabel
- 230
MATEO J..
et al.
A framework to rank genomic alterations as targets for cancer precision medicine:
the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Annals of
Oncology 29 (9) 1895-1902 2018; https://doi.org/10.1093/annonc/mdy263
MissingFormLabel
- 231
IYER G..
et al.
Genome sequencing identifies a basis for everolimus sensitivity. Science 338 (6104)
221 2012; https://doi.org/10.1126/science.1226344
MissingFormLabel
- 232
CHOUDHURY N. J..
et al.
Afatinib Activity in Platinum-Refractory Metastatic Urothelial Carcinoma in Patients
With ERBB Alterations. Journal of Clinical Oncology 34 (18) 2165-2171 2016; https://doi.org/10.1200/jco.2015.66.3047
MissingFormLabel
- 233
GARJE R.,
VADDEPALLY R. K.,
ZAKHARIA Y..
PARP Inhibitors in Prostate and Urothelial Cancers. Front Oncol 10: 114 2020; https://doi.org/10.3389/fonc.2020.00114
MissingFormLabel
- 234
HORWICH A..
et al.
EAU-ESMO consensus statements on the management of advanced and variant bladder cancer-an
international collaborative multi-stakeholder effort: under the auspices of the EAU
and ESMO Guidelines Committeesdagger. Annals of Oncology 30 (11) 1697-1727 2019; https://doi.org/10.3389/fonc.2020.00114
MissingFormLabel
- 235
HANS C. P..
et al.
Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry
using a tissue microarray. Blood 103 (1) 275-282 2004; https://doi.org/10.1182/blood-2003-05-1545
MissingFormLabel
-
SWERDLOW S. H.,
CAMPO E.,
HARRIS N. L.,
JAFFE E. S.,
PILERI S. A.,
STEIN H.,
THIELE J..
WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th. Lyon: IARC;
2017
MissingFormLabel
- 237
SCOTT D. W..
et al.
Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined
by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies. Journal
of Clinical Oncology 33 (26) 2848-2856 2015; https://doi.org/10.1200/jco.2014.60.2383
MissingFormLabel
- 238
JOHNSON N. A..
et al.
Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with
rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. Journal
of Clinical Oncology 30 (28) 3452-3459 2012; https://doi.org/10.1200/jco.2011.41.0985
MissingFormLabel
- 239
STAIGER A. M..
et al.
Clinical Impact of the Cell-of-Origin Classification and the MYC/ BCL2 Dual Expresser
Status in Diffuse Large B-Cell Lymphoma Treated Within Prospective Clinical Trials
of the German High-Grade Non-Hodgkin’s Lymphoma Study Group. Journal of Clinical Oncology
35 (22) 2515-2526 2017; https://doi.org/10.1200/jco.2016.70.3660
MissingFormLabel
- 240
YOUNES A..
et al.
Randomized Phase III Trial of Ibrutinib and Rituximab Plus Cyclophosphamide, Doxorubicin,
Vincristine, and Prednisone in Non-Germinal Center B-Cell Diffuse Large B-Cell Lymphoma.
Journal of Clinical Oncology 37 (15) 1285-1295 2019; https://doi.org/10.1200/jco.18.02403
MissingFormLabel
- 241
PASQUALUCCI L.,
DALLA-FAVERA R..
Genetics of diffuse large B-cell lymphoma. Blood 131 (21) 2307-2319 2018; https://doi.org/10.1182/blood-2017-11-764332
MissingFormLabel
- 242
SCHMITZ R..
et al.
Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. The New England Journal
of Medicine 378 (15) 1396-1407 2018; https://doi.org/10.1056/nejmoa1801445
MissingFormLabel
- 243
RIEDELL P. A.,
SMITH S. M.
Double hit and double expressors in lymphoma: Definition and treatment. Cancer 124
(24) 4622-4632 2018; https://doi.org/10.1002/cncr.31646
MissingFormLabel
- 244
LANDSBURG D. J..
et al.
Outcomes of Patients With Double-Hit Lymphoma Who Achieve First Complete Remission.
Journal of Clinical Oncology 35 (20) 2260-2267 2017; https://doi.org/10.1200/jco.2017.72.2157
MissingFormLabel
- 245
OKI Y..
et al.
Double hit lymphoma: the MD Anderson Cancer Center clinical experience. Br J Haematol
166 (6) 891-901 2014; https://doi.org/10.1111/bjh.12982
MissingFormLabel
- 246
SCOTT D. W..
et al.
High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse
large B-cell lymphoma morphology. Blood 131 (18) 2060-2064 2018; https://doi.org/10.1182/blood-2017-12-820605
MissingFormLabel
- 247
ZHANG L. H.,
KOSEK J.,
WANG M.,
HEISE C.,
SCHAFER P. H.,
CHOPRA R..
Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma
is dependent upon IRF4 and cereblon expression. Br J Haematol 160 (4) 487-502 2013;
https://doi.org/10.1111/bjh.12172
MissingFormLabel
- 248
PICKARD L.,
PALLADINO G.,
OKOSUN J..
Follicular lymphoma genomics. Leuk Lymphoma 61 (10) 2313-2323 2020; https://doi.org/10.1080/10428194.2020.1762883
MissingFormLabel
- 249
DÖLKEN G.,
ILLERHAUS G.,
HIRT C.,
MERTELSMANN R..
BCL-2/JH rearrangements in circulating B cells of healthy blood donors and patients
with nonmalignant diseases. Journal of Clinical Oncology 14 (4) 1333-1344 1996; https://doi.org/10.1200/jco.1996.14.4.1333
MissingFormLabel
- 250
OKOSUN J..
et al.
Integrated genomic analysis identifies recurrent mutations and evolution patterns
driving the initiation and progression of follicular lymphoma. Nature genetics 46
(2) 176-181 2014; https://doi.org/10.1038/ng.2856
MissingFormLabel
- 251
PASTORE A..
et al.
Integration of gene mutations in risk prognostication for patients receiving first-line
immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective
clinical trial and validation in a population-based registry. The Lancet Oncology
16 (9) 1111-1122 2015; https://doi.org/10.1016/s1470-2045(15)00169-2
MissingFormLabel
- 252
LOCKMER S..
et al.
M7-FLIPI is not prognostic in follicular lymphoma patients with first-line rituximab
chemo-free therapy. Br J Haematol 188 (2) 259-267 2020; https://doi.org/10.1111/bjh.16159
MissingFormLabel
- 253
CASULO C..
et al.
Early Relapse of Follicular Lymphoma After Rituximab Plus Cyclophosphamide, Doxorubicin,
Vincristine, and Prednisone Defines Patients at High Risk for Death: An Analysis From
the National LymphoCare Study. Journal of Clinical Oncology 33 (23) 2516-2522 2015;
https://doi.org/10.1200/jco.2014.59.7534
MissingFormLabel
- 254
FEDERICO M..
et al.
Rituximab and the risk of transformation of follicular lymphoma: a retrospective pooled
analysis. Lancet Haematol 5 (8) e359-e67 2018; https://doi.org/10.1016/s2352-3026(18)30090-5
MissingFormLabel
- 255
SARKOZY C..
et al.
Cause of Death in Follicular Lymphoma in the First Decade of the Rituximab Era: A
Pooled Analysis of French and US Cohorts. Journal of Clinical Oncology 37 (2) 144-152
2019; https://doi.org/10.1200/jco.18.00400
MissingFormLabel
- 256
CASULO C.,
BURACK W. R.,
FRIEDBERG J. W..
Transformed follicular non-Hodgkin lympho-ma. Blood 125 (1) 40-47 2015; https://doi.org/10.1182/blood-2014-04-516815
MissingFormLabel
- 257
LOSSOS I. S.,
GASCOYNE R. D..
Transformation of follicular lymphoma. Best Pract Res Clin Haematol 24 (2) 147-163
2011; https://dx.doi.org/10.1016%2Fj.beha.2011.02.006
MissingFormLabel
- 258
WEISS L. M.,
STRICKLER J. G.,
WARNKE R. A.,
PURTILO D. T.,
SKLAR J..
Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol 129 (1) 86-91
1987; http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1899692
MissingFormLabel
- 259
ALEXANDER F. E..
et al.
Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection
by EBV and other agents. British Journal of Cancer 82 (5) 1117-1121 2000; https://doi.org/10.1054/bjoc.1999.1049
MissingFormLabel
- 260
ANSELL S. M..
Hodgkin lymphoma: A 2020 update on diagnosis, risk-stratification, and management.
Am J Hematol 95 (8) 978-989 2020; https://doi.org/10.1002/ajh.25856
MissingFormLabel
- 261
ROEMER M. G..
et al.
PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict
Outcome. Journal of Clinical Oncology 34 (23) 2690-2697 2016; https://doi.org/10.1200/jco.2016.66.4482
MissingFormLabel
- 262
GREEN M. R..
et al.
Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand
expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma
and primary mediastinal large B-cell lymphoma. Blood 116 (17) 3268-3277 2010; https://doi.org/10.1182/blood-2010-05-282780
MissingFormLabel
- 263
ROEMER M. G. M..
et al.
Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression
Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. Journal
of Clinical Oncology 36 (10) 942-950 2018; https://doi.org/10.1200/jco.2017.77.3994
MissingFormLabel
- 264
BORCHMANN S.,
ENGERT A..
The genetics of Hodgkin lymphoma: an overview and clinical implications. Curr Opin
Oncol 29 (5) 307-314 2017; https://doi.org/10.1097/cco.0000000000000396
MissingFormLabel
- 265
SPINA V..
et al.
Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in
classical Hodgkin lymphoma. Blood 131 (22) 2413-2425 2018; https://doi.org/10.1182/blood-2017-11-812073
MissingFormLabel
- 266
COFFIN C. M.,
PATEL A.,
PERKINS S.,
ELENITOBA-JOHNSON K. S.,
PERLMAN E.,
GRIFFIN C. A..
ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory
myofibroblastic tumor. Modern Pathology 14 (6) 569-576 2001; https://doi.org/10.1038/modpathol.3880352
MissingFormLabel
- 267
BINH M. B..
et al.
MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated
and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue
neoplasms with genetic data. The American Journal of Surgical Pathology 29 (10) 1340-1347
2005; https://doi.org/10.1097/01.pas.0000170343.09562.39
MissingFormLabel
- 268
CASALI P. G..
et al.
Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis,
treatment and follow-up. Annals of Oncology 29 , suppl 4, iv51-iv67 2018; https://doi.org/10.1093/annonc/mdy096
MissingFormLabel
- 269
JAIN S.,
XU R.,
PRIETO V. G.,
LEE P..
Molecular classification of soft tissue sarcomas and its clinical applications. International
Journal of Clinical and Experimental Pathology 3 (4) 416-428 2010;
MissingFormLabel
- 270
ITALIANO A..
et al.
Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective,
multicentre, observational study. The Lancet Oncology 17 (4) 532-538 2016; https://doi.org/10.1016/s1470-2045(15)00583-5
MissingFormLabel
- 271
ITALIANO A..
et al.
High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in
EWSR1-negative undifferentiated small blue round cell sarcomas. Genes, chromosomes
& cancer 51 (3) 207-218 2012; https://doi.org/10.1002/gcc.20945
MissingFormLabel
- 272
BRCIC I..
et al.
Undifferentiated round cell sarcomas with CIC-DUX4 gene fusion: expanding the clinical
spectrum. Pathology 52 (2) 236-242 2020; https://doi.org/10.1016/j.pathol.2019.09.015
MissingFormLabel
- 273
GOUNDER M. M..
et al.
Impact of next-generation sequencing (NGS) on diagnostic and therapeutic options in
soft-tissue and bone sarcoma. Journal of Clinical Oncology 35 (15) 11001 2017;
MissingFormLabel
- 274
GROISBERG R..
et al.
Clinical genomic profiling to identify actionable alterations for investigational
therapies in patients with diverse sarcomas. Oncotarget 8 (24) 39254-67 2017; https://doi.org/10.18632/oncotarget.16845
MissingFormLabel
- 275
PESTANA R. C..
et al.
Precision Oncology in Sarcomas: Divide and Conquer. JCO Precision Oncology 2019;
MissingFormLabel
- 276
DICKSON M. A..
et al.
Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified
well-differentiated or dedifferentiated liposarcoma. Journal of Clinical Oncology
31 (16) 2024-2028 2013; https://doi.org/10.1200/jco.2012.46.5476
MissingFormLabel
- 277
SHAW A. T..
et al.
Ceritinib in ALK-rearranged non-small-cell lung cancer. The New England Journal of
Medicine 370 (13) 1189-1197 2014; https://doi.org/10.1056/nejmc1404894
MissingFormLabel
- 278
KIM D. W..
et al.
Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung
cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial.
The Lancet Oncology 17 (4) 452-463 2016; https://doi.org/10.1016/s1470-2045(15)00614-2
MissingFormLabel
- 279
ITALIANO A..
et al.
Treatment with the mTOR inhibitor temsirolimus in patients with malignant PECo-ma.
Annals of Oncology 21 (5) 1135-1137 2010; https://doi.org/10.1093/annonc/mdq044
MissingFormLabel
- 280
SERRANO C..
et al.
Clinical value of next generation sequencing of plasma cell-free DNA in gastrointestinal
stromal tumors. BMC cancer 20 (1) 99 2020; https://doi.org/10.1186/s12885-020-6597-x
MissingFormLabel
- 281
HEINRICH M. C..
et al.
Kinase mutations and imatinib response in patients with metastatic gastrointestinal
stromal tumor. Journal of Clinical Oncology 21 (23) 4342-4349 2003; https://doi.org/10.1200/jco.2003.04.190
MissingFormLabel
- 282
MIETTINEN M.,
LASOTA J..
Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs) - a review.
The international Journal of Biochemistry & Cell Biology 53: 514-519 2014; https://dx.doi.org/10.1016%2Fj.biocel.2014.05.033
MissingFormLabel
- 283
BOIKOS S. A..
et al.
Molecular Subtypes of KIT/ PDGFRA Wild-Type Gastrointestinal Stromal Tumors: A Report
From the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA
oncology 2 (7) 922-928 2016; https://doi.org/10.1001/jamaoncol.2016.0256
MissingFormLabel
- 284
SZUCS Z..
et al.
Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic
implications. Future oncology 13 (1) 93-107 2017; https://doi.org/10.2217/fon-2016-0192
MissingFormLabel
- 285
CASALI P. G..
et al.
Gastrointestinal stromal tumours: ESMO-EURACAN Clinical Practice Guidelines for diagnosis,
treatment and follow-up. Annals of Oncology 29 , suppl 4, iv68-iv78 2018; https://doi.org/10.1093/annonc/mdy095
MissingFormLabel
- 286
HEINRICH M. C..
et al.
Clinical activity of avapritinib in = fourth-line (4L+) and PDGFRA Exon 18 gastrointestinal
stromal tumors (GIST). Journal of Clinical Oncology 37 (15) 11022 2019;
MissingFormLabel
- 287
BOURGEOIS J. M.,
KNEZEVICH S. R.,
MATHERS J. A.,
SORENSEN P. H..
Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma
from other childhood spindle cell tumors. The American journal of surgical pathology
24 (7) 937-946 2000; https://doi.org/10.1097/00000478-200007000-00005
MissingFormLabel
- 288
WELLBROCK C.,
HURLSTONE A..
BRAF as therapeutic target in melanoma. Biochemical pharmacology 80 (5) 561-567 2010;
https://doi.org/10.1016/j.bcp.2010.03.019
MissingFormLabel
- 289
LONG G. V..
et al.
Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. The New England
Journal of Medicine 377 (19) 181323 2017;
MissingFormLabel
- 290
LONG G. V..
et al.
Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New
England Journal of Medicine 371 (20) 1877-1888 2014; https://doi.org/10.1056/nejmoa1406037
MissingFormLabel
- 291
LONG G. V..
et al.
Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic
BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3
study. Annals of Oncology 28 (7) 1631-1639 2017; https://doi.org/10.1093/annonc/mdx176
MissingFormLabel
- 292
ROBERT C..
et al.
Improved overall survival in melanoma with combined dabrafenib and trametinib. The
New England Journal of Medicine 372 (1) 30-39 2015; https://doi.org/10.1056/nejmoa1412690
MissingFormLabel
- 293
ROBERT C..
et al.
Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. The New
England Journal of Medicine 381 (7) 626-636 2019; https://doi.org/10.1056/nejmoa1904059
MissingFormLabel
- 294
LARKIN J..
et al.
Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal
of Medicine 371 (20) 1867-1876 2014; https://doi.org/10.1056/nejmoa1408868
MissingFormLabel
- 295
DUMMER R..
et al.
Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus
binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label,
randomised, phase 3 trial. The Lancet Oncology 19 (10) 1315-1327 2018; https://doi.org/10.1016/s1470-2045(18)30497-2
MissingFormLabel
- 296
DUMMER R..
et al.
Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO):
a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology 18 (4) 435-445
2017; https://doi.org/10.1016/s1470-2045(17)30180-8
MissingFormLabel
- 297
WYMAN K..
et al.
Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma:
significant toxicity with no clinical efficacy. Cancer 106 (9) 2005-2011 2006; https://doi.org/10.1002/cncr.21834
MissingFormLabel
- 298
LEZCANO C.,
SHOUSHTARI A. N.,
ARIYAN C.,
HOLLMANN T. J.,
BUSAM K. J..
Primary and Metastatic Melanoma With NTRK Fusions. The American Journal of Surgical
Pathology 42 (8) 1052-1058 2018; https://doi.org/10.1097/pas.0000000000001070
MissingFormLabel
- 299
LOUIS D. N..
et al.
The 2016 World Health Organization Classification of Tumors of the Central Nervous
System: a summary. Acta Neuropathol 131 (6) 803-820 2016; https://doi.org/10.1007/s00401-016-1545-1
MissingFormLabel
- 300
ECKEL-PASSOW J. E..
et al.
Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. The New
England Journal of Medicine 372 (26) 2499-2508 2015; https://doi.org/10.1056/nejmoa1407279
MissingFormLabel
- 301
VAN DEN BENT M. J.,
MELLINGHOFF I. K.,
BINDRA R. S..
Gray Areas in the Gray Matter: IDH1/2 Mutations in Glioma. American Society of Clinical
Oncology Educational Book 40: 1-8 2020;
MissingFormLabel
- 302
CAIRNCROSS G..
et al.
Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results
of RTOG 9402. Journal of Clini-cal Oncology 31 (3) 337-343 2013; https://doi.org/10.1200/jco.2012.43.2674
MissingFormLabel
- 303
KRISTENSEN B. W.,
PRIESTERBACH-ACKLEY L. P.,
PETERSEN J. K.,
WESSELING P..
Molecular pathology of tumors of the central nervous system. Annals of Oncology 30
(8) 1265-1278 2019; https://doi.org/10.1093/annonc/mdz164
MissingFormLabel
- 304
ICHIMURA K.,
NARITA Y.,
HAWKINS C. E.
Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers.
Acta Neuropathol 129 (6) 789-808 2015; https://doi.org/10.1007/s00401-015-1439-7
MissingFormLabel
- 305
MOLINARO A. M.,
TAYLOR J. W.,
WIENCKE J. K.,
WRENSCH M. R..
Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol 15 (7)
405-417 2019; https://doi.org/10.1038/s41582-019-0220-2
MissingFormLabel
- 306
LOUIS D. N..
et al.
cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht
meeting on future CNS tumor classification and grading. Brain Pathol 30 (4) 844-856
2020; https://doi.org/10.1111/bpa.12832
MissingFormLabel
- 307
SCHINDLER G..
et al.
Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation
frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic
astrocytoma. Acta Neuropathol 121 (3) 397-405 2011; https://doi.org/10.1007/s00401-011-0802-6
MissingFormLabel
- 308
VAISHNAVI A.,
LE A. T.,
DOEBELE R. C..
TRKing down an old oncogene in a new era of targeted therapy. Cancer discovery 5 (1)
25-34 2015; https://doi.org/10.1158/2159-8290.cd-14-0765
MissingFormLabel
- 309
HONG D. S..
et al.
Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis
of three phase 1/2 clinical trials. The Lancet Oncology 21 (4) 531-540 2020; https://doi.org/10.1016/s1470-2045(19)30856-3
MissingFormLabel
- 310
DEMETRI G. D..
et al.
Efficacy and safety of entrectinib in patients with NTRK fusion-positive (NTRK-fp)
Tumors: Pooled analysis of STARTRK-2, STARTRK-1 and ALKA-372-001. . Proceedings of
ESMO 2018 Congress 2018 https://doiorg/101093/annonc/mdy424017
MissingFormLabel
- 311
JONES S..
et al.
Personalized genomic analyses for cancer mutation discovery and interpretation. Science
Translational Medicine 7 (283) 283ra53 2015; https://doi.org/10.1126/scitranslmed.aaa7161
MissingFormLabel
- 312
IZUMCHENKO E..
et al.
Targeted sequencing reveals clonal genetic changes in the progression of early lung
neoplasms and paired circulating DNA. Nature communications 6: 8258 2015; https://doi.org/10.1038/ncomms9258
MissingFormLabel
- 313
CHENG D. T..
et al.
Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets
(MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay
for Solid Tumor Molecular Oncology. J Mol Diagn 17 (3) 251-264 2015; https://doi.org/10.1016/j.jmoldx.2014.12.006
MissingFormLabel
- 314
SINGH R. R..
et al.
Clinical validation of a next-generation sequencing screen for mutational hotspots
in 46 cancer-related genes. J Mol Diagn 15 (5) 607-622 2013; https://doi.org/10.1016/j.jmoldx.2013.05.003
MissingFormLabel
- 315
MANDELKER D..
et al.
Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related
Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing. Jama 318 (9) 825-835
2017; https://doi.org/10.1001/jama.2017.11137
MissingFormLabel
- 316
AZIZ N..
et al.
College of American Pathologists’ laboratory standards for next-generation sequencing
clinical tests. Archives of Pathology & Laboratory Medicine 139 (4) 481-493 2015;
https://doi.org/10.5858/arpa.2014-0250-cp
MissingFormLabel
- 317
YOHE S. L..
et al.
Standards for Clinical Grade Genomic Databases. Archives of Pathology & Laboratory
Medicine 139 (11) 1400-1412 2015; https://doi.org/10.5858/arpa.2014-0568-cp
MissingFormLabel
- 318
EL-DEIRY W. S..
et al.
The current state of molecular testing in the treatment of patients with solid tumors,
2019. CA Cancer J Clin 69 (4) 305-343 2019; https://doi.org/10.3322/caac.21560
MissingFormLabel
- 319
JENNINGS L. J..
et al.
Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint
Consensus Recommendation of the Association for Molecular Pathology and College of
American Pathologists. J Mol Diagn 19 (3) 341-365 2017; https://doi.org/10.1016/j.jmoldx.2017.01.011
MissingFormLabel
- 320
WEISS G. J..
et al.
Evaluation and comparison of two commercially available targeted next-generation sequencing
platforms to assist oncology decision making. Onco Targets Ther 8: 959-967 2015; https://dx.doi.org/10.2147%2FOTT.S81995
MissingFormLabel
- 321
SQUILLACE R. M.,
FRAMPTON G. M.,
STEPHENS P. J.,
ROSS J. S.,
MILLER V. A.
Comparing two assays for clinical genomic profiling: the devil is in the data. Onco
Targets Ther 8: 2237-2242 2015; https://doi.org/10.2147/ott.s88908
MissingFormLabel
- 322
MISYURA M..
et al.
Comparison of Next-Generation Sequencing Panels and Platforms for Detection and Verification
of Somatic Tumor Variants for Clinical Diagnostics. J Mol Diagn 18 (6) 842-850 2016;
https://doi.org/10.1016/j.jmoldx.2016.06.004
MissingFormLabel
- 323
WOOD D. E..
et al.
A machine learning approach for somatic mutation discovery. Science Translational
Medicine 10 (457) 2018;
MissingFormLabel
- 324
HOSKINSON D. C.,
DUBUC A. M.,
MASON-SUARES H..
The current state of clinical interpretation of sequence variants. Curr Opin Genet
Dev 42: 33-39 2017; https://doi.org/10.1016/j.gde.2017.01.001
MissingFormLabel
- 325
YORCZYK A.,
ROBINSON L. S.,
ROSS T. S..
Use of panel tests in place of single gene tests in the cancer genetics clinic. Clin
Genet 88 (3) 278-282 2015; https://doi.org/10.1111/cge.12488
MissingFormLabel
- 326
AMENDOLA L. M..
et al.
Actionable exomic incidental findings in 6503 participants: challenges of variant
classification. Genome Res 25 (3) 305-315 2015; https://doi.org/10.1101/gr.183483.114
MissingFormLabel
- 327
SHAH P. D.,
NATHANSON K. L..
Application of Panel-Based Tests for Inherited Risk of Cancer. Annu Rev Genomics Hum
Genet 18: 20127 2017; https://doi.org/10.1146/annurev-genom-091416-035305
MissingFormLabel
- 328
RICHARDS S..
et al.
Standards and guidelines for the interpretation of sequence variants: a joint consensus
recommendation of the American College of Medical Genetics and Genomics and the Association
for Molecular Pathology. Genet Med 17 (5) 405-424 2015; https://doi.org/10.1038/gim.2015.30
MissingFormLabel
- 329
CHAKRAVARTY D..
et al.
OncoKB: A Precision Oncology Knowledge Base. JCO Precision Oncology 2017;
MissingFormLabel
- 330
GRIFFITH M..
et al.
CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation
of variants in cancer. Nature genetics 49 (2) 170-174 2017; https://doi.org/10.1038/ng.3774
MissingFormLabel
- 331
CERAMI E..
et al.
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer
genomics data. Cancer discovery 2 (5) 401-404 2012; https://doi.org/10.1158/2159-8290.cd-12-0095
MissingFormLabel
- 332
GAO J..
et al.
Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
Sci Signal 6 (269) l1 2013; https://doi.org/10.1126/scisignal.2004088
MissingFormLabel