Neonatologie Scan 2018; 07(02): 135-146
DOI: 10.1055/a-0527-2653
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Die Sexualsteroide Östradiol und Progesteron – eine neue Therapieoption für Frühgeborene?

Andreas Trotter

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Prof. Dr. med. Andreas Trotter, Singen.
Further Information

Publication History

Publication Date:
29 May 2018 (online)

Während der Schwangerschaft produziert die Plazenta steigende Mengen an Östradiol (E2) und Progesteron (P), denen auch der Fetus ausgesetzt ist. Nach der Geburt kommt es zu einem rapiden Konzentrationsabfall beider Steroide bei Mutter und Kind. Welche Auswirkungen dieser relative Mangel an E2 und P für Frühgeborene hat, ist nicht bekannt. Es gibt Hinweise dafür, dass beide Hormone für die Entwicklung bedeutend sind.

Kernaussagen
  • Während der Schwangerschaft steigen die Plasmakonzentrationen von E2 und P bei der Mutter bis um den Faktor 100 an, denen auch der Fetus ausgesetzt ist.

  • Nach der Geburt kommt es durch Wegfall der Plazenta innerhalb weniger Stunden zu einem rapiden Abfall der E2- und P-Plasmakonzentrationen bei Mutter und Kind.

  • Sehr kleine Frühgeborene sind viele Wochen von der E2- und P-Versorgung durch die Plazenta abgeschnitten.

  • Es gibt viele Hinweise aus der Literatur, dass E2 und P für sehr kleine Frühgeborenen im Hinblick auf die Knochenmineralisierung, Lungenfunktion und neurologische Entwicklung bedeutend sein könnten.

  • Bisherige Studien zu einer postnatalen Substitution von E2 und P bei sehr kleinen Frühgeborenen konnten interessante Trends für ein besseres Outcome aufzeigen.

 
  • Literatur

  • 1 Siler-Khodr TM. Endocrine and paracrine function of the human placenta. In: Polin RA, Fox WW. (Hrsg.) Fetal and neonatal physiology. Philadelphia: WB Saunders; 1992: 74-85
  • 2 Aschheim S. Weitere Untersuchungen über Hormone und Schwangerschaft. Arch F Gynäk 1927; 132: 179-183
  • 3 Moncrieff A. The value of oestrin for premature babies. Arch Dis Child 1936; 11: 9-20
  • 4 Smith OW. Diethylstilbestrol in the prevention and treatment of complications of pregnancy. Am J Obstet Gynecol 1948; 56: 821-834
  • 5 Reinisch JM. Prenatal exposure of human foetuses to synthetic progestin and oestrogen affects personality. Nature 1977; 266: 561-562
  • 6 Herbst A, Ulfelder H, Poskanzer D. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 1971; 284: 878-881
  • 7 Dodd JM, Jones L, Flenady V. et al. Prenatal administration of progesterone for preventing preterm birth in women considered to be at risk of preterm birth. Cochrane Database Syst Rev 2013; DOI: 10.1002/14651858.CD004947.pub3.
  • 8 Shanklin D, Wolfson S. Aqueous estrogens in the management of respiratory distress syndrome. J Reprod Med 1970; 5: 53-71
  • 9 James JR, Congdon PJ, Truscott J. et al. Osteopenia of prematurity. Arch Dis Child 1986; 61: 871-876
  • 10 Pohlandt F. Prevention of postnatal bone demineralization in very low-birth-weight infants by individually monitored supplementation with calcium and phosphorus. Pediatr Res 1994; 35: 125-129
  • 11 Schwartz Z, Soskolne W, Neubauer T. et al. Direct and sex–specific enhancement of bone formation and calcification by sex steroids in fetal mice long bone in vitro (biochemical and morphometric study). Endocrinology 1991; 129: 1167-1174
  • 12 Migliaccio S, Newbold RR, Bullock BC. et al. Alterations of maternal estrogen levels during gestation affect the skeleton of female offspring. Endocrinology 1996; 137: 2118-2125
  • 13 Slootweg MC, Ederveen AG, Schot LP. et al. Oestrogen and progestogen synergistically stimulate human and rat osteoblast proliferation. J Endocrinol 1992; 133: R5-8
  • 14 Prior JC, Seifert-Klauss VR, Giustini D. et al. Estrogen-progestin therapy causes a greater increase in spinal bone mineral density than estrogen therapy – a systematic review and meta-analysis of controlled trials with direct randomization. J Musculoskelet Neuronal Interact 2017; 17: 146-154
  • 15 Khosla S, Rooney S. Stimulation of fetal lung surfactant production by administration of 17beta-estradiol to the maternal rabbit. Am J Obstet Gynecol 1979; 133: 213-216
  • 16 Connelly I, Hammond G, Harding P. et al. Levels of surfactant-associated protein messenger ribonucleic acids in rabbit lung during perinatal development and after hormonal treatment. Endocrinology 1991; 129: 2583-2591
  • 17 Khosla S, Smith G, Parks P. et al. Effects of estrogen on fetal rabbit lung maturation: morphological and biochemical studies. Pediatr Res 1981; 15: 1274-1281
  • 18 Thuresson-Klein A, Moawad A, Hedqvist P. Estrogen stimulates formation of lamellar bodies and release of surfactant in the rat fetal lung. Am J Obstet Gynecol 1985; 151: 506-514
  • 19 Sweezey N, Tchepichev S, Gagnon S. et al. Female gender hormones regulate mRNA levels and function of the rat lung epithelial Na channel. Am J Physiol 1998; 274: C379-386
  • 20 Massaro D, Massaro GD. Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice. Am J Physiol Lung Cell Mol Physiol 2004; 287: L1154-1159
  • 21 Trotter A, Ebsen M, Kiossis E. et al. Prenatal Estrogen and Progesterone Deprivation Impairs Alveolar Formation and Fluid Clearance in Newborn Piglets. Pediatr Res 2006; 60: 60-64
  • 22 Compernolle V, Brusselmans K, Acker T. et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 2002; 8: 702-710
  • 23 Trotter A, Kipp M, Schrader RM. et al. Combined application of 17beta-estradiol and progesterone enhance vascular endothelial growth factor and surfactant protein expression in cultured embryonic lung cells of mice. Int J Pediatr 2009; 2009: 170491
  • 24 Trotter A, Hilgendorff A, Kipp M. et al. Gender-related effects of prenatal administration of estrogen and progesterone receptor antagonists on VEGF and surfactant-proteins and on alveolarisation in the developing piglet lung. Early Hum Dev 2009; 85: 353-359
  • 25 McCurnin DC, Pierce RA, Willis BC. et al. Postnatal estradiol up-regulates lung nitric oxide synthases and improves lung function in bronchopulmonary dysplasia. Am J Respir Crit Care Med 2009; 179: 492-500
  • 26 Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev 1979; 3: 79-83
  • 27 Gressens P, Rogido M, Paindaveine B. et al. The impact of neonatal intensive care practices on the developing brain. J Pediatr 2002; 140: 646-653
  • 28 Beyer C. Estrogen and the developing mammalian brain. Anat Embryol (Berl) 1999; 199: 379-390
  • 29 Hübner S, Sunny DE, Pohlke C. et al. Protective Effects of Fetal Zone Steroids Are Comparable to Estradiol in Hyperoxia-Induced Cell Death of Immature Glia. Endocrinology 2017; 158: 1419-1435
  • 30 Tibrewal M, Cheng B, Dohare P. et al. Disruption of Interneuron Neurogenesis in Premature Newborns and Reversal with Estrogen Treatment. J Neurosci 2018; 38: 1100-1113
  • 31 Asimiadou S, Bittigau P, Felderhoff-Mueser U. et al. Protection with estradiol in developmental models of apoptotic neurodegeneration. Ann Neurol 2005; 58: 266-276
  • 32 Trotter A, Steinmacher J, Kron M. et al. Neurodevelopmental Follow-up at 5 Years Corrected age of Extremely Low Birth Weight Infants after Postnatal Replacement of 17β-Estradiol and Progesterone. J Clin Endocrinol Metab 2012; 97: 1041-1047
  • 33 Liang CC, Liu HL, Chang SD. et al. The Protective Effect of Human Umbilical Cord Blood CD34+ Cells and Estradiol against Focal Cerebral Ischemia in Female Ovariectomized Rat: Cerebral MR Imaging and Immunohistochemical Study. PLoS One 2016; 11: e0147133
  • 34 Pluchino N, Russo M, Genazzani AR. The fetal brain: role of progesterone and allopregnanolone. Horm Mol Biol Clin Investig 2016; 27: 29-34X
  • 35 Dang J, Mitkari B, Kipp M. et al. Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats. Brain Behav Immun 2011; 25: 715-726
  • 36 Trotter A, Maier L, Pohlandt F. Management of the extremely low birth weight neoante, is the replacement of estradiol and progesterone beneficial. Pediatr Drugs 2001; 3: 629-637
  • 37 Trotter A, Maier L, Grill HJ. et al. 17β-estradiol and progesterone supplementation in extremely low-birth-weight infants. Pediatr Res 1999; 45: 489-493
  • 38 Camacho-Arroyo I, Perez-Palacios G, Pasapera AM. et al. Intracellular progesterone receptors are differentially regulated by sex steroid hormones in the hypothalamus and the cerebral cortex of the rabbit. J Steroid Biochem Mol Biol 1994; 50: 299-303
  • 39 Medlock KL, Forrester TM, Sheehan DM. Progesterone and estradiol interaction in the regulation of rat uterine weight and estrogen receptor concentration. Proc Soc Exp Biol Med 1994; 205: 146-153
  • 40 Tulchinsky D, Okada DM. Hormones in human pregnancy.IV. Plasma progesterone. Am J Obstet Gynecol 1975; 121: 293-299
  • 41 Trotter A, Maier L, Grill HJ. et al. Effects of postnatal estradiol and progesterone replacement in extremely preterm infants. J Clin Endocrinol Metab 1999; 84: 4531-4535
  • 42 Trotter A, Bokelmann B, Sorgo W. et al. Follow-up examination at the age of 15 months of extremely preterm infants after postnatal estradiol and progesterone replacement. J Clin Endocrinol Metab 2001; 86: 601-603
  • 43 Trotter A, Maier L, Kron M. et al. Effect of oestradiol and progesterone replacement on bronchopulmonary dysplasia in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed 2007; 92: F94-98
  • 44 Brandenberger AW, Tee MK, Lee JY. et al. Tissue distribution of estrogen receptors alpha (ER-alpha) and beta (ER-beta) mRNA in the midgestational human fetus. J Clin Endocrinol Metab 1997; 82: 3509-3512
  • 45 Zhang H, Wang X, Xu K. et al. 17beta-estradiol ameliorates oxygen-induced retinopathy in the early hyperoxic phase. Biochem Biophys Res Commun 2015; 457: 700-705
  • 46 Gerstner B, Lee J, DeSilva TM. et al. 17beta-estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. J Neurosci Res 2009; 87: 2078-2086
  • 47 Fabres RB, da Rosa LA, de Souza SK. et al. Effects of progesterone on the neonatal brain following hypoxia-ischemia. Metab Brain Dis 2018; DOI: 10.1007/s11011-018-0193-7.
  • 48 Li X, Zhang J, Zhu X. et al. Progesterone reduces inflammation and apoptosis in neonatal rats with hypoxic ischemic brain damage through the PI3K/Akt pathway. Int J Clin Exp Med 2015; 8: 8197-8203