Der Nuklearmediziner 2018; 41(02): 145-156
DOI: 10.1055/a-0571-9107
Seltene nuklearmedizinische Untersuchungen
© Georg Thieme Verlag KG Stuttgart · New York

„Auf den Punkt gebracht“ − Die Radioembolisation primärer und sekundärer Lebertumoren mit unterschiedlichen Mikrosphären

“Right on Target” – Radioembolization of Primary and Secondary Liver Tumors with Different Microspheres
Harun Ilhan
Klinik und Poliklinik für Nuklearmedizin, Klinikum der Universität München, München
,
Andrei Todica
Klinik und Poliklinik für Nuklearmedizin, Klinikum der Universität München, München
› Author Affiliations
Further Information

Publication History

Publication Date:
11 June 2018 (online)

Zusammenfassung

Die duale Gefäßversorgung der Leber spielt eine wichtige Rolle für die Entwicklung von Lebermetastasen, die oft prognosebestimmend sind. Diese Gefäßversorgung ist jedoch auch die Grundlage intraarterieller Therapieoptionen, bei denen die Blutversorgung primärer und sekundärer Lebertumoren durch die A. hepatica ausgenutzt wird. Bei der Radioembolisation werden nach Ausschöpfung chirurgischer Therapieoptionen radioaktiv markierte Mikrosphären über die Leberarterie in und um Lebertumoren unter weitgehender Schonung des gesunden Leberparenchyms appliziert. Die Therapie findet bereits seit mehreren Jahrzehnten klinische Anwendung. In den letzten Jahren wurden mehrere prospektive Phase III-Studien mit 90Y-Mikrosphären durchgeführt, die jedoch meist keinen signifikanten Überlebensvorteil im Vergleich zur systemischen Chemotherapie oder zu Thyrosinkinase-Inhibitoren zeigen konnten. Dennoch findet die Radioembolisation insbesondere als Zweit- oder Drittlinientherapie Empfehlung in zahlreichen Leitlinien zu primären und sekundären Lebertumoren, wobei jedoch oft zwischen verschiedenen intraarteriellen Therapieverfahren keine verbindliche Empfehlung bezüglich der Methode der Wahl ausgesprochen wird. Dieser Übersichtsartikel soll einen Überblick über die derzeitig verfügbaren radioaktiv markierten Mikrosphären geben, die im Rahmen der Radioembolisation Verwendung finden. Diese unterscheiden sich teilweise deutlich in ihren physikalischen Eigenschaften. Der Stellenwert der 99 mTc-MAA-Angiografie sowie die Bestimmung des Leber-Lungen-Shunts und die szintigrafische Beurteilung eines möglichen dystopen Abstromes werden in der Literatur teilweise kontrovers diskutiert. Diese Aspekte sollen zusammen mit den unterschiedlichen Berechnungsmethoden der Therapieaktivität je nach Wahl der Mikrosphären beleuchtet werden.

Abstract

The dual blood supply to the liver plays an important role in the development of liver metastases, which often determine the prognosis. The dual blood supply to the liver, however, is also essential for intraarterial therapy options in primary and secondary liver tumors. Radioembolization is a therapy option in non-resectable liver tumors that enables targeted application of radioactive microspheres in and around tumor lesions. Radioembolization has found clinical application for several decades. Unfortunately, several prospective phase III trials could not demonstrate a survival benefit of radioembolization with 90Y-microspheres in comparison to systemic chemotherapy or novel therapy options such as thyrosine kinase inhibitors. Nevertheless, radioembolization remains a guideline recommended therapy especially as a second or third line option, although the method of choice between different intraarterial therapy methods remains unclear. This review is supposed to give an overview on currently available microspheres for radioembolization. These compounds have some relevant differences in their physical characteristics. The status of 99 mTc-MAA angiography during pretreatment work-up, the evaluation of liver-lung-shunting and the scintigraphic assessment of non-target embolization is still subject to controversy. These aspects and the differences in dose calculation methods with respect to the different microspheres are highlighted in this review.

 
  • Literatur

  • 1 Heimbach JK. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67: 358-380
  • 2 Pasciak A, Bradley Y, McKinney JM. Handbook of Radioembolization: Physics, Biology, Nuclear Medicine, and Imaging. Portland, United States: Taylor & Francis Inc.; 2016
  • 3 Abuodeh Y, Naghavi AO, Ahmed KA. et al. Prognostic value of pre-treatment F-18-FDG PET-CT in patients with hepatocellular carcinoma undergoing radioembolization. World J Gastroenterol 2016; 22: 10406-10414
  • 4 Ahmadzadehfar H, Meyer C, Ezziddin S. et al. Hepatic volume changes induced by radioembolization with 90Y resin microspheres. A single-centre study. European journal of nuclear medicine and molecular imaging 2013; 40: 80-90
  • 5 Ahmadzadehfar H, Meyer C, Pieper CC. et al. Evaluation of the delivered activity of yttrium-90 resin microspheres using sterile water and 5 % glucose during administration. EJNMMI research 2015; 5: 54
  • 6 Ahmadzadehfar H, Mohlenbruch M, Sabet A. et al. Is prophylactic embolization of the hepatic falciform artery needed before radioembolization in patients with 99mTc-MAA accumulation in the anterior abdominal wall?. Eur J Nucl Med Mol Imaging 2011; 38: 1477-1484
  • 7 Aussilhou B, Lesurtel M, Sauvanet A. et al. Right portal vein ligation is as efficient as portal vein embolization to induce hypertrophy of the left liver remnant. J Gastrointest Surg 2008; 12: 297-303
  • 8 Borggreve AS, Landman A, Vissers CMJ. et al. Radioembolization: Is Prophylactic Embolization of Hepaticoenteric Arteries Necessary? A Systematic Review. Cardiovasc Intervent Radiol 2016; 39: 696-704
  • 9 Bottcher J, Hansch A, Pfeil A. et al. Detection and classification of different liver lesions: comparison of Gd-EOB-DTPA-enhanced MRI versus multiphasic spiral CT in a clinical single centre investigation. European journal of radiology 2013; 82: 1860-1869
  • 10 Braat A, Prince JF, van Rooij R. et al. Safety analysis of holmium-166 microsphere scout dose imaging during radioembolisation work-up: A cohort study. Eur Radiol 2018; 28: 920-928
  • 11 Chiesa C, Maccauro M, Romito R. et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging 2011; 55: 168-197
  • 12 Chiesa C, Mira M, Maccauro M. et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. European journal of nuclear medicine and molecular imaging 2015; 42: 1718-1738
  • 13 DʼArienzo M, Chiaramida P, Chiacchiararelli L. et al. 90Y PET-based dosimetry after selective internal radiotherapy treatments. Nucl Med Commun 2012; 33: 633-640
  • 14 Devcic Z, Rosenberg J, Braat AJ. et al. The efficacy of hepatic 90Y resin radioembolization for metastatic neuroendocrine tumors: a meta-analysis. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2014; 55: 1404-1410
  • 15 Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989; 5: 303-311 ; discussion 312–303.
  • 16 Edeline J, Lenoir L, Boudjema K. et al. Volumetric changes after (90)y radioembolization for hepatocellular carcinoma in cirrhosis: an option to portal vein embolization in a preoperative setting?. Ann Surg Oncol 2013; 20: 2518-2525
  • 17 Elschot M, Vermolen BJ, Lam MG. et al. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PloS one 2013; 8: e55742
  • 18 Fendler WP, Lechner H, Todica A. et al. Safety, Efficacy, and Prognostic Factors After Radioembolization of Hepatic Metastases from Breast Cancer: A Large Single-Center Experience in 81 Patients. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2016; 57: 517-523
  • 19 Fernandez-Ros N, Inarrairaegui M, Paramo JA. et al. Radioembolization of hepatocellular carcinoma activates liver regeneration, induces inflammation and endothelial stress and activates coagulation. Liver Int 2015; 35: 1590-1596
  • 20 Garin E, Lenoir L, Rolland Y. et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2012; 53: 255-263
  • 21 Garin E, Rolland Y, Edeline J. et al. Personalized dosimetry with intensification using 90Y-loaded glass microsphere radioembolization induces prolonged overall survival in hepatocellular carcinoma patients with portal vein thrombosis. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2015; 56: 339-346
  • 22 Garin E, Rolland Y, Pracht M. et al. High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with (90) Y-loaded glass microsphere radioembolization. Liver Int 2017; 37: 101-110
  • 23 Garlipp B, de Baere T, Damm R. et al. Left-liver hypertrophy after therapeutic right-liver radioembolization is substantial but less than after portal vein embolization. Hepatology 2014; 59: 1864-1873
  • 24 Giammarile F, Bodei L, Chiesa C. et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. European journal of nuclear medicine and molecular imaging 2011; 38: 1393-1406
  • 25 Gil-Alzugaray B, Chopitea A, Inarrairaegui M. et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2013; 57: 1078-1087
  • 26 Grady ED, Sale W, Nicolson Jr. WP. et al. Intra-arterial radioisotopes to treat cancer. The American surgeon 1960; 26: 678-684
  • 27 Hamoui N, Minocha J, Memon K. et al. Prophylactic embolization of the gastroduodenal and right gastric arteries is not routinely necessary before radioembolization with glass microspheres. Journal of vascular and interventional radiology: JVIR 2013; 24: 1743-1745
  • 28 Hartenbach M, Weber S, Albert NL. et al. Evaluating Treatment Response of Radioembolization in Intermediate-Stage Hepatocellular Carcinoma Patients Using 18F-Fluoroethylcholine PET/CT. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2015; 56: 1661-1666
  • 29 Haug AR, Heinemann V, Bruns CJ. et al. 18F-FDG PET independently predicts survival in patients with cholangiocellular carcinoma treated with 90Y microspheres. European journal of nuclear medicine and molecular imaging 2011; 38: 1037-1045
  • 30 Haug AR, Tiega Donfack BP, Trumm C. et al. 18F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2012; 53: 371-377
  • 31 Hendlisz A, Van den Eynde M, Peeters M. et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 2010; 28: 3687-3694
  • 32 Hilgard P, Hamami M, Fouly AE. et al. Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology 2010; 52: 1741-1749
  • 33 Ho S, Lau WY, Leung TW. et al. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. European journal of nuclear medicine 1997; 24: 293-298
  • 34 Ilhan H, Goritschan A, Paprottka P. et al. Predictive Value of 99mTc-MAA SPECT for 90Y-Labeled Resin Microsphere Distribution in Radioembolization of Primary and Secondary Hepatic Tumors. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2015; 56: 1654-1660
  • 35 Jia Z, Sella DM, Wang W. Regarding “Radioembolization: Is Prophylactic Embolization of Hepaticoenteric Arteries Necessary? A Systematic Review”. Cardiovasc Intervent Radiol 2016; 39: 1365-1366
  • 36 Jongen JMJ, Rosenbaum C, Braat M. et al. Anatomic versus Metabolic Tumor Response Assessment after Radioembolization Treatment. J Vasc Interv Radiol 2018; 29: 244-253 e242.
  • 37 Jreige M, Mitsakis P, Van Der Gucht A. et al. (18)F-FDG PET/CT predicts survival after (90)Y transarterial radioembolization in unresectable hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2017; 44: 1215-1222
  • 38 Kao YH, Steinberg JD, Tay YS. et al. Post-radioembolization yttrium-90 PET/CT – part 2: dose-response and tumor predictive dosimetry for resin microspheres. EJNMMI research 2013; 3: 57
  • 39 Kao YH, Steinberg JD, Tay YS. et al. Post-radioembolization yttrium-90 PET/CT – part 1: diagnostic reporting. EJNMMI research 2013; 3: 56
  • 40 Kennedy A. Radioembolization of hepatic tumors. Journal of gastrointestinal oncology 2014; 5: 178-189
  • 41 Kennedy AS, Ball D, Cohen SJ. et al. Multicenter evaluation of the safety and efficacy of radioembolization in patients with unresectable colorectal liver metastases selected as candidates for (90)Y resin microspheres. Journal of gastrointestinal oncology 2015; 6: 134-142
  • 42 Lam MG, Banerjee A, Goris ML. et al. Fusion dual-tracer SPECT-based hepatic dosimetry predicts outcome after radioembolization for a wide range of tumour cell types. Eur J Nucl Med Mol Imaging 2015; 42: 1192-1201
  • 43 Lam MG, Louie JD, Abdelmaksoud MH. et al. Limitations of body surface area-based activity calculation for radioembolization of hepatic metastases in colorectal cancer. J Vasc Interv Radiol 2014; 25: 1085-1093
  • 44 Lau WY, Kennedy AS, Kim YH. et al. Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres. Int J Radiat Oncol Biol Phys 2012; 82: 401-407
  • 45 Lau WY, Leung WT, Ho S. et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. British journal of cancer 1994; 70: 994-999
  • 46 Lenoir L, Edeline J, Rolland Y. et al. Usefulness and pitfalls of MAA SPECT/CT in identifying digestive extrahepatic uptake when planning liver radioembolization. Eur J Nucl Med Mol Imaging 2012; 39: 872-880
  • 47 Meyer BC, Frericks BB, Voges M. et al. Visualization of hypervascular liver lesions During TACE: comparison of angiographic C-arm CT and MDCT. AJR Am J Roentgenol 2008; 190: W263-269
  • 48 Mouli S, Memon K, Baker T. et al. Yttrium-90 radioembolization for intrahepatic cholangiocarcinoma: safety, response, and survival analysis. Journal of vascular and interventional radiology: JVIR 2013; 24: 1227-1234
  • 49 Padia SA, Alessio A, Kwan SW. et al. Comparison of positron emission tomography and bremsstrahlung imaging to detect particle distribution in patients undergoing yttrium-90 radioembolization for large hepatocellular carcinomas or associated portal vein thrombosis. J Vasc Interv Radiol 2013; 24: 1147-1153
  • 50 Palard X, Edeline J, Rolland Y. et al. Dosimetric parameters predicting contralateral liver hypertrophy after unilobar radioembolization of hepatocellular carcinoma. European journal of nuclear medicine and molecular imaging 2018; 45: 392-401
  • 51 Paprottka KJ, Lehner S, Fendler WP. et al. Reduced Periprocedural Analgesia After Replacement of Water for Injection with Glucose 5% Solution as the Infusion Medium for 90Y-Resin Microspheres. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2016; 57: 1679-1684
  • 52 Paprottka KJ, Todica A, Ilhan H. et al. Evaluation of Visualization Using a 50/50 (Contrast Media/Glucose 5% Solution) Technique for Radioembolization as an Alternative to a Standard Sandwich Technique. Cardiovasc Intervent Radiol 2017; 40: 1740-1747
  • 53 Pavel M, OʼToole D, Costa F. et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016; 103: 172-185
  • 54 Petroziello MF, McCann JW, Gonsalves CF. et al. Side-branch embolization before 90Y radioembolization: rate of recanalization and new collateral development. AJR Am J Roentgenol 2011; 197: W169-174
  • 55 Rengo M, Bellini D, De Cecco CN. et al. The optimal contrast media policy in CT of the liver. Part II: Clinical protocols. Acta radiologica 2011; 52: 473-480
  • 56 Rengo M, Bellini D, De Cecco CN. et al. The optimal contrast media policy in CT of the liver. Part I: Technical notes. Acta radiologica 2011; 52: 467-472
  • 57 Salem R, Parikh P, Atassi B. et al. Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution. Am J Clin Oncol 2008; 31: 431-438
  • 58 Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: Technical and methodologic considerations. Journal of vascular and interventional radiology: JVIR 2006; 17: 1251-1278
  • 59 Sangro B, Gil-Alzugaray B, Rodriguez J. et al. Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer 2008; 112: 1538-1546
  • 60 Seidensticker M, Seidensticker R, Damm R. et al. Prospective randomized trial of enoxaparin, pentoxifylline and ursodeoxycholic acid for prevention of radiation-induced liver toxicity. PloS one 2014; 9: e112731
  • 61 Seidensticker R, Seidensticker M, Damm R. et al. Hepatic toxicity after radioembolization of the liver using (90)Y-microspheres: sequential lobar versus whole liver approach. Cardiovasc Intervent Radiol 2012; 35: 1109-1118
  • 62 Smits ML, Elschot M, van den Bosch MA. et al. In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2013; 54: 2093-2100
  • 63 Srinivas SM, Natarajan N, Kuroiwa J. et al. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post-Radioembolization (90)Y PET. Front Oncol 2014; 4: 255
  • 64 Teo JY, Goh BK, Cheah FK. et al. Underlying liver disease influences volumetric changes in the spared hemiliver after selective internal radiation therapy with 90Y in patients with hepatocellular carcinoma. J Dig Dis 2014; 15: 444-450
  • 65 Theysohn JM, Ertle J, Muller S. et al. Hepatic volume changes after lobar selective internal radiation therapy (SIRT) of hepatocellular carcinoma. Clin Radiol 2014; 69: 172-178
  • 66 Van Cutsem E, Cervantes A, Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27: 1386-1422
  • 67 Van de Wiele C, Maes A, Brugman E. et al. SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging 2012; 39: 1646-1655
  • 68 Vilgrain V, Pereira H, Assenat E. et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. The Lancet Oncology 2017; 18: 1624-1636
  • 69 Vouche M, Lewandowski RJ, Atassi R. et al. Radiation lobectomy: time-dependent analysis of future liver remnant volume in unresectable liver cancer as a bridge to resection. J Hepatol 2013; 59: 1029-1036
  • 70 Wallace MJ, Murthy R, Kamat PP. et al. Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. Journal of vascular and interventional radiology: JVIR 2007; 18: 1500-1507
  • 71 Wasan HS, Gibbs P, Sharma NK. et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. The Lancet Oncology 2017; 18: 1159-1171
  • 72 Wondergem M, Smits ML, Elschot M. et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2013; 54: 1294-1301
  • 73 Zade AA, Rangarajan V, Purandare NC. et al. 90Y microsphere therapy: does 90Y PET/CT imaging obviate the need for 90Y Bremsstrahlung SPECT/CT imaging?. Nucl Med Commun 2013; 34: 1090-1096
  • 74 Zech CJ, Korpraphong P, Huppertz A. et al. Randomized multicentre trial of gadoxetic acid-enhanced MRI versus conventional MRI or CT in the staging of colorectal cancer liver metastases. The British journal of surgery 2014; 101: 613-621